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Abstract

We study how individualized, proxy-based environmental information shapes beliefs, defensive
investments, and demand for precise diagnostics in the context of waterborne lead exposure.
Leveraging the mandated disclosure of water service line inventories under the 2021 Lead and
Copper Rule Revision, we conduct a pre-registered randomized experiment in five large U.S.
cities that discloses to treated households whether their building’s service line is recorded as
lead. Disclosure induces sharp belief updating: among homes recorded as lead, perceived LSL
probability rises by 21 percentage points relative to non-lead homes; confidence increases by 0.2
(on a 1-5 scale) across all treated respondents. Willingness to pay for filters falls by $8 on average
for the non-lead respondents, while the effect on the lead respondents is ambiguous. Meanwhile,
Willingness to pay for inspection increases by $9 for the lead respondents and decreases by $7
for the non-lead respondents. A stylized model-—where the mean and variance of perceived
tap-water contamination determine households’ optimal decisions—rationalizes these patterns.
Back-of-the-envelope calculations imply that inventory disclosure generates ~ 17 million of social
value in our five study cities alone, before accounting for any health gains from subsequent
mitigation practices.
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1 Introduction

Lead exposure through drinking water remains a first-order public health concern in the United
States. The principal pathway is corrosion from lead service lines (LSLs)—the pipes connecting
buildings’ internal plumbing to municipal mains. Although Congress prohibited their use in public
water systems in 1986, roughly nine million LSLs still serve households nationwide as of 2025
(USEPA, 2023). Lead is a potent neurotoxin with no safe level of exposure; there are no effective
secondary interventions (Bui et al., 2024). Upon entry, the human body falsely recognizes lead as
similarly charged (42) metallic elements, like calcium or iron, causing disruptions in many critical
processes throughout the body (Garza et al., 2006). For example, lead can cross the blood-brain
barrier, interfering with neurotransmitter functions and spurring cognitive changes. For children in
particular, even low doses impair cognition and behavior with persistent consequences for schooling
performance, adult mental health, and socioemotional development (Aizer et al., 2018; Aizer and
Currie, 2019; Gronqvist et al., 2020; Hollingsworth et al., 2022; Reyes, 2015). Lead exposure is also
linked to diminished fertility (Grossman and Slusky, 2019), adverse birth outcomes (Clay et al.,
2014, 2025; Dave and Yang, 2022), deficits in cognitive skills (Ferrie et al., 2012; Marcus, 2023),
and overall mortality (Hollingsworth and Rudik, 2021; Menke et al., 2006). Addressing exposure
at the household margin is, therefore, central to the welfare calculus of U.S. water infrastructure
investments and environmental policymaking.

This paper provides the first experimental evidence on how individualized but proxy-based en-
vironmental information shapes both beliefs and defensive investments in the context of waterborne
lead. We design and implement a pre-registered, within-city randomized information intervention
in five large U.S. cities—Detroit, Indianapolis, Milwaukee, Minneapolis, and New York City.! Re-
spondents assigned to the treatment group learn about the LSL status of their residential buildings
according to the city inventories. Before and after disclosure, we elicit (1) belief about having an
LSL and the perceived number of lead exceedances in 100 kitchen tap water samples, along with
belief confidence and (2) incentive-compatible willingness to pay (WTP) for a pitcher-style filter
and for a professional tap-water lead inspection.

A major policy update is the individualized disclosure of LSL status mandated under EPA’s

!This experiment is registered in the AEA RCT Registry as AEARCTR-0016286.


https://www.socialscienceregistry.org/trials/16286

Lead and Copper Rule Revision (LCRR), which requires utilities to create and publicly publish
parcel-level service-line inventories (USEPA, 2020). Information disclosure is often viewed as a
scalable, relatively low-cost tool to incentivize private defensive behavior. Yet two core uncertainties
limit our ability to predict its effectiveness in this setting. First, an inventory disclosure is proxy-
based: it informs households about pipe material rather than directly measuring tap-water lead,
which depends on corrosion control, pipe condition, premise plumbing, and usage patterns. Second,
even when information is precise about the proxy, its behavioral impact depends on how households
learn—how disclosure shifts the perception of exposure (i.e., its mean and standard deviation) and
how those beliefs map into demand for defensive investments in stopgap mitigation or precise
diagnostics to resolve the remaining uncertainty.

Our design is guided by a stylized framework in which households maximize utility over a nu-
meraire and drinking water quality, where the latter is determined by the tap-water contamination
level and households’ mitigation effort. Disclosure updates the perceived distribution of contam-
ination rather than revealing a deterministic contamination level. When disclosure increases the
perceived mean of contamination (e.g., the household learns it has an LSL), demand for diagnostics
and defensive investment can rise. At the same time, in our setting, the inventory disclosure plau-
sibly reduced the perceived uncertainty of the contamination distribution, which might reduce the
demand. Thus, our model highlights that the impact of information is a priori ambiguous when
confronted with bad news (LSL), as it depends on how much the realized signal would change the
perceived mean and standard deviation. We take these predictions to the data using intent-to-treat
(ITT) specifications with city fixed effects, complemented by (1) a “post-on-pre” formulation and
(2) variants that replace true LSL status with a perception gap regressor to study updating rates.

As fielding of the survey is still ongoing, we expect to reach a final sample of approximately
2,000 respondents in January 2026. With the current sample of 568 valid responses from Detroit,
Indianapolis, Milwaukee, and NYC, two main findings have begun to emerge. First, disclosure
induces sharp belief updating. Among respondents in homes recorded as lead, the perceived prob-
ability of having an LSL rises by about 21 percentage points relative to non-lead homes. Across
all treated respondents, belief confidence increases by roughly 0.22 on a 1 — 5 scale, suggesting
that disclosure narrows subjective uncertainty around the tap-water lead content level. Second,

the results emphasize the effect of disclosure on demand for diagnostics. Filter WTP falls by $8 on



average for the non-lead respondents (~ 13% of baseline), while the effect on the lead respondents
is ambiguous. Meanwhile, inspection WTP showed an average of $9 increase for the lead respon-
dents (~ 13% of baseline) and an average of $7 decrease for the non-lead respondents (~ 10%
of baseline). These magnitudes are economically meaningful and align closely with the model’s
comparative statics when the disclosed proxy shifts the perceived mean or variance of exposure.
In addition, the effects are robust across alternative specifications, including post-on-pre outcomes
and models that specifically estimate learning rate by investigating the treatment effect given prior
perception gap.

The policy implications are direct—we inform the optimal design of the costliest U.S. water in-
frastructure intervention in decades. Our findings show that households substantially overestimate
the probability that their own service line is made of lead—the true LSL share in our sample is
about 29%, whereas average priors are around 57%. The large chasm between beliefs and reality
stands in contrast to many settings in which households underestimate the severity of ambient
pollutants, such as PMy5 (Ahmad et al., 2022; Chowdhury et al., 2025; Greenstone et al., 2021).
This asymmetry makes water infrastructure a particularly informative setting for studying how in-
dividualized, proxy-based information re-aligns beliefs and defensive investments. With Congress’s
allocation of $15 billion for LSL replacement in the 2021 Infrastructure Investment and Jobs Act
and the EPA’s mandate to disclose inventories, understanding household behavioral responses is
crucial for designing cost-effective bundles of policies as well as the welfare analysis of said policies.
We show that disclosure both generates efficiency gains and reveals latent demand for diagnostics
among lead households, netting a social value of ~ $17 million in our sample cities alone.

Our paper contributes to several strands of literature. First, we extend the environmental in-
formation disclosure literature by causally identifying how public, proxy-based information shifts
demand for more precise exposure assessment. Prior work establishes that environmental informa-
tion disclosure drives avoidance behaviors and reduces exposure. Air quality warnings (Barwick
et al., 2024; Gao et al., 2023; Neidell, 2010; Zivin and Neidell, 2009), water contamination alerts
(Dupas et al., 2023; Madajewicz et al., 2007), wildfire risk disclosures (Ma et al., 2024), and health
risk disclosures (Dupas, 2011) all induce defensive behaviors and investment. Although in many
cases the publicly available information provides only a coarse proxy for an individual’s true en-

vironmental exposure, far less is known about whether—and how—such proxy-based disclosures



motivate households to seek more precise exposure assessments. Our study fills this gap by directly
showing that the LSL signal triggers higher WTP for diagnostics.

Second, we build on the literature examining personalized information-provision. Greenstone
et al. (2021) and Metcalfe and Roth (2025) study how individualized indoor air quality readings
influence defensive behaviors and investment; Conell-Price and Mulder (2024) study belief updating
pertinent to property-level flood risks; and Allcott (2011), Allcott and Rogers (2014), and Jessoe
and Rapson (2014) study how household-level energy-use feedback influences residential energy
consumption. Relative to these costly, individualized interventions, we evaluate a policy already
deployed at scale (mandated city inventories) and show that it induces households to self-select
into precise diagnostics when the disclosed signal implies a high level of exposure. To implement
the personalized information provision, we conduct geospatial screening and matching, the details
of which will be explained in Section .

Third, we contribute revealed-preference evidence from a high-stakes environmental health set-
ting to the long-standing literature on the value of information (Stigler, 1961). Our approach is
closely related to randomized information experiments that study how people update expectations
when provided with objective signals under Bayesian learning (Armantier et al., 2016; Mobius
et al., 2022). A growing theoretical literature also emphasizes that information policy design re-
quires understanding both how signals update beliefs and how changes in belief map to behavioral
margins (Bergemann and Morris, 2019; Caplin and Dean, 2015). We operationalize this by jointly
measuring belief distributions, confidence, and incentive-compatible valuations for both mitigation
and diagnostics. Our findings overall illustrate an economically meaningful portfolio reallocation
that purely belief-based designs would miss.

Finally, our results connect to the extensive literature on health and human capital consequences
of lead exposure (e.g., Clay et al., 2014; Dave and Yang, 2022; Hollingsworth et al., 2022; Marcus,
2023), providing the behavioral counterpart needed to assess the benefits of disclosure and the
welfare returns to complementary investments such as inspection and eventual pipe replacement.
Recent work has attempted to estimate large welfare gains from the Clean Water Act and Safe
Drinking Water Act (Keiser and Shapiro, 2019; Keiser et al., 2023). We provide the evidence on
behavioral responses needed to evaluate policies designed to combat waterborne lead exposure.

The remainder of the paper proceeds as follows. Section 2 describes the experimental design,



data, and implementation, including geospatial screening and the disclosure messages. Section 3
presents the stylized model and derives testable predictions. Section 4 introduces data and survey
participants. Section 5 reports the main experimental results on belief updating, confidence, and

WTP for mitigation and diagnostics, with robustness and heterogeneity. Section 6 concludes.

2 Experiment Design

We now describe the experimental design outlined in Section 1.

2.1 The LSL Information Intervention Experiment

Under EPA’s LCRR, water utilities must assemble and publish parcel-level inventories of service-
line materials by October 16, 2024. We leverage these newly released inventories to conduct an
information provision experiment embedded in an online survey, for which Figure 1 summarizes
the structure.?

We field our survey in five large U.S. cities—Detroit, Indianapolis, Milwaukee, Minneapo-
lis, and New York City—using Qualtrics software and implemented via Managed Research on
CloudResearch.. Cities were selected for policy relevance (i.e., large LSL stocks and active inven-
tories) and operational feasibility (Table 1). The target sample comprises N = 2,000 validated
completions, with approximately equal allocation across treatment and control within each city.
Stratified randomization at the city level ensures balanced assignment and facilitates the inclusion
of city fixed effects in the analysis.

At the beginning of the survey, after screening out those who self-reported that they did not use
tap water as their primary water source, participants are assigned a water service line material type
through a two-step geospatial matching process. First, participants pinpoint their residence on an
embedded interactive map using Qualtrics-Map with Mapbox. Then, the latitude and longitude
coordinates from the pinned location are automatically cross-referenced with the geospatial water
service line inventory dataset of the corresponding city held on ArcGIS Online through an API.
If no match is found, the participant is screened out. If a match is found, they continue with the

survey.

2The complete survey instrument is available here here.


https://drive.google.com/file/d/1gLCKN7kwAocnnwFuV4h3UD1Mxz4iUK76/view?usp=drive_link

Randomization of the information disclosure occurs only after a successful match and completion
of all pre-intervention questions. Within each city stratum, eligible respondents are assigned to a
control or treatment arm with equal probability. The intervention comprises a concise, standardized
disclosure. The control arm received a neutral description of the city inventory database and general
information about LSLs. The treatment arm received the same content, along with their building-
specific LSL status, explicitly attributed to the city database. Equalizing the generic text across
arms isolates the causal effect of individualized disclosure from generic salience of LSL issues.
Figure 2 shows screenshots of the intervention messages. All key outcomes—Dbeliefs about LSL
presence, beliefs about tap-water lead exceedances, confidence, and WTP for a filter and for an
inspection—are elicited both before and after this information screen.

Beliefs include (1) the perceived probability (0 — 100) that the home has an LSL and (2)
the expected number of lead exceedances in 100 hypothetical tap samples. Respondents also
report a 1 — 5 confidence rating for the exceedance belief. We then elicit incentive-compatible
WTP for (1) a pitcher-style filter and (2) a professional kitchen tap-water inspection using the
Becker—-DeGroot—Marschak (BDM) mechanism (Becker et al., 1964). We implement the BDM
mechanism by randomly selecting two respondents for a binding endowment (a $150 gift card),
then drawing a random posted price from $0 to $150. The winners either exchange part of the en-
dowment ($150 —stated WTP) for the chosen good when stated WTP > price or receive the entire
$150 endowment when stated WTP < price. Prior to bidding, the instrument also includes a com-
prehension check. Together, our implementation maintains incentive compatibility while keeping
costs predictable.

Two features of our experiment warrant additional emphasis. First, by conducting eligibility
screening through geospatial matching before randomization, we ensure that all participants in both
treatment and control arms are successfully linked to official government service line records. This
design avoids the problem in which treated participants cannot receive building-specific information
because the address lookup occurs after randomization and no match is found. This also allows
us to calculate the prior perception gap for all participants. Second, the disclosure text and user
interface are harmonized across cities to the extent possible; any city-specific elements are also
standardized in length and tone, with city fixed effects accounting for residual heterogeneity.

We considered the possibility that our information intervention might be less effective because



utilities are already notifying customers about service line materials under the LCRR. To investigate
this, we asked respondents if they had been notified and if they could recall the specific information.
As shown in Table A1, 29% stated they could recall a notification, and only 17% correctly recalled
whether their service line was lead or non-lead. More importantly, Figure Al shows that the status
of notification and recall is not associated with the distribution of the pre-intervention perceived

likelihood of LSL presence.

2.2 Empirical Specifications

The empirical specifications follow the approach in the information intervention experiment liter-
ature (Haaland et al., 2023). Our estimands are ITT effects of individualized disclosure on belief
updating and demand for mitigation and diagnostics. All specifications follow the registered pre-
analysis plan. Let ¢ index respondents and ¢(i) their city. Outcomes are measured immediately

before and after the intervention message:
Y € {LSL prob (P), Exceedances (S), Confidence (C), WTP(Filter), WTP(Inspection)}.

Let L; € {0,1} indicate whether the city inventory records the respondent’s service line as lead;
D; € {0,1} indicate assignment to building-specific disclosure; and ~,(;) be city fixed effects. We

first establish a baseline I'TT specification to model the pre-post changes:
AY; = (YiPOSt — Yipre> = Bo + B1Di + BaLi + B3(D; X Li) + ey + i (1)

Here, 51 is the disclosure effect for non-lead homes while 83 captures the differential disclosure
effect for lead versus non-lead homes.
To improve precision and guard against regression-to-the-mean concerns, we also estimate a

post-on-pre form:
Yipmt =00+ 61D; +02L; + 05(D; x L;) + pY,P™* + Ve(i) T Wi- (2)

Under randomization, 6; and 63 identify the same causal parameters as in (1) while p absorbs

baseline variation and typically yields tighter confidence intervals.



To study belief updating directly, we also replace L; with the perception gap

GZ‘ELi*PPTGE[*l,l],

(2

where PP denotes the respondent’s pre-treatment belief about having an LSL, rescaled from the

elicited 0-100 probability to the [0, 1] interval. We then estimate

AY; = ag + a1 D; + G + a3(D; X Gi) + Vo) + €6 (3)

where a3 is interpretable as a reduced-form “updating rate” (i.e., how strongly disclosure moves
outcomes conditional on the size and direction of the prior-record discrepancy). This parametriza-
tion mirrors the expectations-formation literature, which models belief updating as a function of
prior forecast errors and recovers “updating rates” from the slope of the update on that error
(e.g., Armantier et al. (2016)). In our setting, a positive and sizable a3 is evidence that disclo-
sure moves beliefs in proportion to the prior misperception (rather than simply shifting levels via
generic salience or demand effects), and thus provides a simple test of whether updating behaves
in a broadly Bayesian manner. We also consider |G;| to isolate responses to uncertainty magnitude
irrespective of sign.

Section 5.4 specifies a set of heterogeneity analyses we expect to conduct when we finish fieldwork

with approximately 2,000 responses.

3 Model

This section develops a compact framework that links (1) how households learn from publicly
disclosed, proxy-based information about water lead exposure to (2) their WTP for two distinct
defensive margins: mitigation technology and individualized exposure assessment. The model is
designed to deliver testable predictions that our experimental design can evaluate directly .

Two features motivate our approach. First, the disclosure studied in this paper is individualized
but proxy-based, which is highly informative about the exposure but does not measure tap-water
lead directly. Such a signal naturally shifts the perception of exposure—its mean and distribution—

rather than revealing the exact state. Second, defensive investment spans two conceptually different



goods. A filter reduces exposure mechanically, conditional on the realized contamination, whereas
an inspection changes the perceived exposure distribution that guides subsequent mitigation choices.
These differences imply that disclosure can affect WTP for filters and inspections through distinct
channels.

We formalize these channels by modeling a household with quasi-linear preferences over a nu-
meraire good = and a damage index d that summarizes the health disutility of consumption of
contaminated water. Prior beliefs about the underlying tap-water contamination level w are sum-
marized by a distribution m,, with mean p and standard deviation o. The information intervention
perturbs m,,. For example, learning that the building has an LSL typically raises p and may reduce
o because the proxy signal narrows the support of plausible states. Conversely, learning that it
does not have an LSL lowers p and may also reduce o.

The central comparative statics we care about follow the logic of two forces:

1. Mean (risk level) effect. Holding uncertainty fixed, a higher perceived mean contamination
1 increases the payoff to mitigation and to targeted information acquisition—because the

value of clarifying whether extreme states obtain is larger when expected harm is greater.

2. Variance (uncertainty) effect. Holding the mean fixed, an increase in uncertainty o
strengthens both defensive margins. For mitigation, higher dispersion can raise WTP when
damages are convex in exposure. For inspection, greater uncertainty raises the value of
updating, because the incremental benefit of a precise reading is larger when the prior is

more diffuse.

Because disclosure typically moves both y and o, the net effect on diagnostic demand is theoretically
ambiguous ex ante: the variance-reduction channel lowers WTP, while the mean-shift channel can
raise it if perceived risk increases. This trade-off mirrors our empirical design, which separately
identifies effects for homes recorded as lead versus non-lead.

The remainder of the section proceeds in three steps. We first present a general choice environ-
ment and derive the optimal BDM bid for a filter and for an inspection—objects that coincide with
the experimentally elicited WTPs. We then impose quasi-linearity to obtain transparent expres-

sions that highlight how WTP maps into moments of m,,. Finally, we specialize primitives to obtain

10



closed-form comparative statics that we can carry to the data. The proofs for all propositions and

conjectures are relegated to the Appendix.

3.1 General Setup

Let u(z, d) denote household utility, where z is the numeraire with price 1 and d is the contamination

of the water intake. We maintain the following assumption on preferences:
Assumption 1. u is concave in (z,d) and twice differentiable with Ou/dx > 0 and Ou/dd < 0.

Income is denoted by y. The (unknown) tap-water contamination is w, and prior beliefs about
w are 7, with mean p and standard deviation ¢. The information intervention changes m,,. We
study its implications for the WTP for (1) a filter and (2) a professional inspection, both elicited
via incentive-compatible BDM bids. For completeness, Appendix B.4 reports the benchmark in
which w is known.

A filter attenuates exposure mechanically: contamination falls from w to ew with e € [0,1)
known to the household after purchase. The household bids z; if the posted BDM price r ~ U (][0, 7])
satisfies z > r, it buys at price r. Expected utility, therefore, weighs the filtered and unfiltered

states by the purchase probability z/7 as follows:

U(z,?rw)Z/OZ %E [u(y — r, ew)] dr—#—/: %E[u w)] dr W
zlAzE[u(y—r,ew)]dr—i—(l—i

(v,
) Eluly,w)).

7

Proposition 1. Under Assumption (1), the optimal bid z*(m,,) equalizes the expected utility from

just buying at price z to the expected utility from not buying, i.e.,
Elu(y — 2% (mw), ew)] = E [u(y, w)] . (5)

On the other hand, an inspection changes information rather than exposure. Upon purchasing
at price 7, the household observes a realization of w before choosing mitigation effort a € A (e.g.,
flushing, point-of-use actions), which reduces contamination according to d(w, a) at cost ¢(a). The
cost of mitigation effort is denoted by a continuous, increasing, and convex function c(a) > 0.

Without inspection, it optimally chooses a based on the prior m,. With inspection, it optimally

11



tailors a to the realized w. Define the expected utility without inspection as:

Vo(my) = Icrlleafl(E {u(y —c(a), d(w, a))} ,

and the expected utility with inspection ex ante as

Vi(r, mp) = E [ggu(y — e(a) — 7, d(w, a))] .

Therefore, the expected utility of an inspection purchase is

U(z,m0) = i/o Vi(r, 7o) dr + (1 — ;) Vo (). (6)

Proposition 2. Under Assumption (1), the optimal bid Z*(m,,) equals the expected utility gain from

acting on the realized w relative to acting on m,, i.e.,
Vi(Z(Tw), mw) = Vo(mw). (7)

3.2 Comparative Statics

To obtain expressions that map cleanly to moments of m,,, we impose:

Assumption 2. There exists a twice-differentiable v with u(z,d) = = + v(d), dv/dd < 0, and
0*v/dd < 0.

3.2.1 WTP for Water Filter under Simplified Assumptions

Under quasi-linearity defined in Assumption (2), the optimal bid for filters collapses to the differ-
ence in expected damages between filtered and unfiltered states, as characterized by the following
equation:

2" (my) = Elv(ew) — v(w)]. (8)

Thus, the optimal bid is determined by the functional form of the damage function. We then
impose both a linear and a quadratic damage function to examine the relationship between the

optimal bid and the perception of exposure—the primary focus of our experiment.
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Corollary 1. Under Assumption 2, if there exists B > 0 such that v(d) = —pd, then z*(my) =
B(1 —e)u and thus 0z*(my)/Ou > 0.

Corollary 2. Under Assumption 2, if there exists 3 > 0 such that v(d) = —Bd?, then z*(m,) =

B(1 —e2)(u? + 0?), and thus 0z*(my)/Ou > 0 and 0z* (1) /0o > 0.

Assuming a linear damage function, Corollary 1 shows that the optimal bid for the water filter
is positively determined by the expectation about the tap water pollution level alone. On the
other hand, Corollary 2 shows that the optimal bid is determined by both the expectation and the
variance of the tap water pollution level and increases in both of them, if the damage function is

quadratic.

3.2.2 WTP for Inspection under Simplified Assumptions

Under quasi-linearity defined in Assumption (2), the optimal bid for inspection equals the ex-ante
value of information: the difference between V; (mw), the expected maximized utility when actions
are chosen after observing w, and %(Ww), the expected maximized utility when actions are chosen

before observing w. It is characterized by Lemma 1:

Lemma 1. Under Assumption 2, the optimal bid for the water inspection

where

Vo(mw) = maxEly —c(a) +v(d)], Vi(my) =E maxy —c(a) +v(d)

To sharpen predictions, we adopt linear mitigation technology and assume a uniform prior over

[l,u] so that (i, o) fully summarize beliefs, as characterized by Assumption 3 and Assumption 4.
Assumption 3. There ezists ¢ > 0 such that c(a) = ca; A= 1[0,1] and d(w,a) = w(l — a)

Assumption 4. The prior belief about w follows uniform distribution: w ~ U(l,u) with 0 <1 < u.

This leads to | = pu — /30, u = 4+ V30, and pn > /30.

13



Thus, the optimal bid for inspection is determined by the function form of the damage function.

We similarly impose both a linear and a quadratic damage function v and focus on the implication.

Corollary 3. Under Assumption 2, 3, and 4, if there exists 5 > 0 such that v(d) = —fd, then we

have the following results:
1. Ifl>¢/B oru<c/B, then Z*(my) =0
2. Ifl<c/B <wu:

(a) when p < c/B,

82;(:111) _ ul—z(ﬁ“_c) > 0;
(b) when p > c/B,
az*a(;rw) _ 1_l(5l —¢) < 0;
(¢) For both cases,
az;(;rw) _ (u§)2(3502 — B2 + ep).

. L. 82*(7710) .
The necessary and sufficient condition for =5 > 0 is

o> Sl —2;» (10)

A sufficient condition for the inequality in Equation (10) is u — % < 0. This sufficient

condition always holds when p < ¢/f.

Corollary 3 shows that if the prior belief is too high (I > ¢/f) or too low (u < ¢/f3), the optimal
bid for inspection is always 0. This is because when [ > ¢/, the optimal mitigation action is
always 1, with or without the precise information about w. Similarly, when u < ¢/, the optimal
mitigation action is always 0, and knowing the precise level of w does not change the mitigation

action taken.
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Corollary 4. Under assumption 2, 3, and 4, if there exists 8 > 0 such that v(d) = —j3d?, then we

have the following result®:
1. When 12 > ¢/(28),

0Z* (mw) 0Z* ()

<0, and > 0;

2. When u? < c/(2p),

(1) = 0.

Corollary 4 shows that if the prior belief is relatively high (1> > ¢/(28)), the optimal bid
for inspection decreases with mean and increases with variance; if the prior belief is very low
(u? < ¢/(2B)), the optimal bid is always 0 because the optimal mitigation action is always 0.

The value of the inspection is strictly positive only when the household’s prior places them in the
“region of actionability” —the interval of beliefs where the resolution of uncertainty could pivot the

“non-lead” signal effectively pushes

optimal decision from inaction to action (or vice versa). The
households out of this region and into the “safe” corner solution, rendering further information
valueless. The “lead” signal, however, locates households squarely within the region of actionability:
they know the risk is non-zero, but arguably not high enough to warrant immediate, expensive pipe
replacement without confirmation. In this geometric interpretation, the inventory disclosure acts
as a complement to the inspection for high-risk types, enhancing the option value of downstream
diagnostics.

In summary, with linear damages, inspection WTP is zero whenever beliefs place the household
in a corner (i.e., always mitigate fully or never mitigate), and otherwise exhibits the mean—variance
trade-off. In particular, when p < ¢/f < u, Z*(m,) increases in both p and o. When beliefs are
sufficiently pessimistic or optimistic that optimal actions are unchanged by information, Z*(m,,) = 0.
With quadratic damages, inspection WTP remains increasing in variance over a wide region of the

parameter space and can be decreasing in the mean when priors are already in the high-damage

range.

3Refer to Appendix B.6 for the proof for Corollary 4.
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3.2.3 Predictions

The model delivers clear predictions we test experimentally: (1) WTP for filters depends on u alone
with linear damages, and is increasing in both p and o with quadratic damages; and (2) WTP for
inspection depends on both p and ¢ and is increasing in each. Furthermore, inspection is valuable
when information is consequential for the optimal action. This value tends to decrease with lower
uncertainty but can increase with higher perceived mean. A critical insight from Corollary 2 is that
under convex damages, the demand for mitigation is increasing in both the perceived mean (u)
and the perceived variance (o) of the hazard. This creates a theoretical ambiguity for the “lead”
treatment. While a “lead” disclosure constitutes “bad news” (u 1), the official inventory also serves
as a high-precision signal that resolves prior ambiguity about the home’s infrastructure (o J).
Consequently, the variance suppression effect may dampen or even offset the mean risk effect in
the valuation of stopgap mitigation goods like filters. Conversely, for “non-lead” households, both
the mean and variance shift in the same direction (]), unambiguously collapsing demand. Our

empirical specifications are tailored to recover these comparative statics.

4 Data and Sample

This section describes the construction of our sampling frame, related survey implementation, and
the characteristics of the analysis sample that underpins the empirical results. Throughout, we
focus on the four cities in which the experiment has already been fielded—Detroit, Indianapolis,
Milwaukee, and New York City (NYC)—and briefly discuss the planned expansion to Minneapolis.
We have currently collected 568 valid responses from September 3 to 23, 2025. The completion of

the fielding will bring the total target sample to approximately 2,000 respondents across five cities.

4.1 Service Line Records and Study Areas

The starting point for our design is the parcel-level service line inventory data that cities have made
public in response to the LCRR. For each of the cities, we obtained the most recent water service
line inventory available at the time of experiment implementation and processed the records into
GIS layers at the parcel level. Each record reports the material of the water service line connecting

the parcel to the water main, typically classified as lead, galvanized, non-lead, or unknown.
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Table 1 summarizes these inventories. Across Detroit, Indianapolis, Milwaukee, Minneapolis,
and NYC, there are roughly 1.7 million recorded service lines, of which over 385,000(22%) are
identified as lead and 928,000(53%) as non-lead, with the remainder coded as unknown (including
galvanized). These records serve two roles in our project. First, they define the study area by re-
stricting attention to parcels with a known lead status. Second, conditional on successful geospatial
matching, they provide the individualized but proxy-based information that is disclosed to treated
respondents.

For the planned extension, we have already processed analogous parcel-level service line data
for Minneapolis, which contains a substantial share of lead lines as well. Adding Minneapolis to the
experimental sites allows us to test the generalizability of our findings in a fifth, demographically

and institutionally distinct city, thereby increasing the external validity of our experiment.

4.2 Current Analysis Sample and Quality Controls

Fieldwork in the four current cities began on September 3, 2025. By September 23, we had obtained
781 complete surveys (394 assigned to control and 387 to treatment), which were trimmed via
pre-registered quality screens as shown in Table A2. We first excluded responses from pilot waves,
leaving 662 completes. We then dropped respondents whose completion time was below ten minutes
and those who failed at least one attention check question. The final analysis sample contains 568
respondents (294 control and 274 treatment). The p-values of the Pearson’s Chi-square test between
treatment assignment and LSL status shown in Table A2 suggest orthogonality between the two,
indicating that response filtering does not compromise the randomized nature of the treatment.
Within the cleaned sample, Table 2 reports the cross-tabulation of city, material, and treatment
status. In each city, we observe both lead and non-lead homes in both experimental arms, with
roughly two-thirds of respondents residing in non-lead buildings and one-third in lead buildings,
reflecting the underlying inventories. This joint variation in treatment and true LSL status is
central to our empirical strategy.

The sample is well balanced across treatment arms. Table 3 shows that treated and control
respondents look similar across a whole host of household characteristics, with all p-values from
statistical tests sitting comfortably above conventional significance thresholds. The balance we

observe across key household characteristics confirms that our randomization was robust and suc-
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cessful, reinforcing the internal validity of our empirical analysis. Moreover, when we compare
our sample to official, population-weighted benchmarks across our study cities, the distributions of
key demographics are broadly comparable, with small deviations across average household age and
income.

Table 4 compares respondent demographics by recorded service line material to population-
weighted benchmarks across our study cities. Households in the lead sample are slightly younger
and have lower incomes than both the non-lead sample and the underlying city populations, and
they are substantially less likely to be White (29% vs. 43% in the non-lead group and 36% in
the census benchmark). These patterns mirror well-documented environmental justice gradients
in lead exposure and related health risks, underscoring why LSL replacement is also an urgent
equity concern (Aizer et al., 2018; Hollingsworth and Rudik, 2021). For comparisons in other
characteristics by treatment assignment, please refer to Table A3, which includes water usage,
perception of health damage from lead, trust in the city’s database (and the information received
in the treated group), and effectiveness of the Brita pitcher filter. Note that among these variables,
only those on water usage are collected before the intervention, while the others are collected at
the end of the survey.

We plan to resume the fielding of the survey during December 2025 and January 2026 and recruit
approximately 300 additional respondents in Minneapolis under the same protocol. Combined with
the existing four-city sample, this will yield a five-city experiment with about 2,000 respondents,
improving statistical power and allowing us to probe heterogeneity in treatment effects across

distinct regulatory and demographic environments.

5 Results

5.1 Pre-intervention Baseline Analytics

We begin by documenting the pre-intervention characteristics of the experimental sample and
verifying that randomization produced comparable treatment and control groups. Tables 5 and 6
report pre-treatment beliefs and WTPs overall and by material. Prior to information disclosure,
treatment and control groups look similar: respondents assign on average a probability of ~ 57%

that their home has an LSL, expect ~ 25 tap-water samples to exceed the lead standard, and
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express mean WTPs for a pitcher filter and for an inspection in the $65 — $75 range. Differences
between arms are small and statistically insignificant within both the lead and non-lead strata. This
supports our use of post-minus-pre changes as the main outcome in the empirical specifications.
At the same time, the levels of these priors are striking: in the underlying inventories, only
about 29% of homes in our analysis sample are actually recorded as having LSLs, making average
subjective priors almost twice as high as the objective LSL share. The average prior on lead
exceedance in tap water is also over twice the EPA safety limit (10 samples). This large ex ante gap
between perceived and actual LSL prevalence underscores both the salience of waterborne lead in
households’ minds and the potential value of inventory-based disclosure in correcting systematically
pessimistic priors about service-line risk. It also contrasts with recent evidence from highly polluted
ambient-air settings, where households often underestimate actual pollution levels or the returns

to mitigation (Ahmad et al. (2022); Chowdhury et al. (2025); Greenstone et al. (2021)).

5.2 Main Results

We now turn to the effects of disclosing building-specific LSL status on beliefs and WTPs. Figures
3-5 illustrate the changes in our outcome variables caused by the intervention, broken out by
experimental arm and material type; Table 7 presents ITT estimates from Equation (1). We
organize the results in three parts: belief updating (Columns 1 — 3), mitigation demand (Column
4), and diagnostic demand (Column 5).

Beliefs about LSL presence respond strongly and in the direction implied by the disclosed infor-
mation. Figure 3a plots the change in the percentage belief reported before and after the information
intervention; that is, P/ ost _ PP™. The figure indicates that information disclosure increases the
perceived likelihood among lead respondents and decreases it among non-lead respondents. Based
on Column (1) of Table 7, among respondents whose addresses are recorded as having lead service
lines, treatment increases the perceived probability of having an LSL by about 21 percentage points
relative to non-lead respondents. This effect corresponds to roughly 0.8 pre-treatment standard
deviation of LSL beliefs.

In addition, disclosure shifts beliefs about tap-water contamination. Figure 4a reveals a diver-

gence in the treated group: respondents with LSLs increase their estimates of lead exceedances,

while those without LSLs lower their estimates. Meanwhile, the control group shows little change.
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Column (2) of Table 7 shows that, for lead addresses, the information intervention raises the per-
ceived number of lead exceedances (out of 100 hypothetical samples) by about 6.7 samples relative
to non-lead addresses; this effect is economically meaningful, though estimated with substantial
uncertainty in the current sample. Column (4) of Table 10 shows a more precisely estimated effect
under the learning-rate specification in Equation (3), of similar magnitude (8.84).

Information disclosure increases belief confidence. In Figure 3b, we treat PP"® and PP** as the
probability parameters of Bernoulli distributions to calculate the pre- and post-standard deviations.
For both the lead respondents and the non-lead respondents, we observe a larger decrease in the
standard deviation among treated respondents relative to those in the control arm. Specifically, the
treated non-lead group appears to exhibit the most significant reduction in uncertainty. Figure 4b
plots the change in confidence regarding the number of lead exceedances in 100 kitchen tap water
samples. The figure confirms an increase in confidence among the treated respondents compared
with the control group.

Column (3) of Table 7 shows that, pooling across lead and non-lead homes, assignment to
treatment increases respondents’ confidence in their beliefs by about 0.22 point on a 1-5 scale,
approximately 0.23 standard deviation of the baseline confidence distribution. This pattern is con-
sistent with disclosure narrowing the perceived distribution of possible states, even when the mean
risk moves up or down. The joint movement of beliefs and confidence also resonates with the broader
literature on self-confidence and information acquisition, which shows that individuals adjust con-
fidence in response to signals in ways that shape subsequent choices and welfare (Mobius et al.,
2022). While our context is simpler and does not model strategic confidence management, the pat-
tern that confidence responds systematically to inventory signals—alongside beliefs—underscores
that disclosure changes not only perceived risk levels but also how certain households feel about
those beliefs.

Turning to defensive behavior, we find clear evidence that providing proxy-based information
changes the demand for diagnostics, while the effect on mitigation is not precisely estimated for
lead respondents. Figure 5a plots the distribution of the change in WTP for the Brita pitcher-style
filter; it suggests a treatment-induced decrease among the non-lead group but statistically imprecise
effect for the lead group. In contrast, Figure 5b reveals a sharp treatment-induced divergence in

demand for diagnostics: WTP increases for the treated lead group and decreases for the treated

20



non-lead group, while the control group remains relatively stable.

Column (4) of Table 7 confirms that, among non-lead respondents, the treatment reduces WTP
for a pitcher-style filter by about $8 on average (roughly 0.18 baseline standard deviation of the
non-lead respondents). For lead respondents, the estimate of the treatment effect (i.e., the sum of
the coefficients on Treatment and Lead x Treatment) is less precisely estimated (point estimate
= —%$2.30, 95% CI [—$10.19, $5.59]). While currently inconclusive, we anticipate greater precision
with the full sample.

Conversely, Column (5) of Table 7 shows a significant positive treatment—lead interaction:
among lead-address households, the information intervention increases WTP for a professional
kitchen-tap inspection by about $16 relative to non-lead households, corresponding to roughly 0.36
of the baseline standard deviation. Specifically, the LSL group increased their WTP by $8.91,
whereas the non-LSL group decreased theirs by $7.26.

We interpret these results through our model, in which households optimize expenditures based
on the perceived distribution of exposure. For LSL households, disclosure raises the mean perceived
risk while reducing uncertainty. Our results suggest that the effect of higher mean risk outweighs
the effect of reduced uncertainty, driving households to increase their demand for individualized

exposure assessments.

5.3 Robustness

We assess the robustness of these findings across several pre-specified dimensions in our analysis
plan. First, we augment equation (1) with baseline covariates capturing household income and the
presence of children aged 10 or younger. These variables are potentially important both for the
perceived stakes of lead exposure and for access to mitigation technologies. The coefficients on
the treatment—lead interaction remain practically unchanged when these controls are included (see
Table 8).

Second, we estimate a “post-on-pre” version of the main specification, as specified in Equa-
tion (2). The resulting estimates, summarized in Table 9, confirm that our conclusions are not an
artifact of using change scores; the implied treatment—lead effects on posterior beliefs and WTPs
are of similar order of magnitude to the baseline ITT estimates.

Third, we exploit the “perception gap” structure of our design and re-estimate the main specifi-
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cation by replacing the lead-status indicator with the pre-treatment perception gap, as specified in
Equation (3). This alternative parametrization follows the learning literature and allows us to relate
belief updating directly to the size and sign of prior errors. Table 10 reports coefficient estimates
of 2.20 and 8.84 for perception gap x Treatment in Columns (2) and (4). This means that the
perception-gap specifications yield patterns that closely resemble Bayesian updating: larger prior
errors are associated with proportionally larger revisions in the direction of the disclosed inventory
record. This structure echoes Armantier et al. (2016), who show that inflation expectations update
in proportion to prior forecast errors when households receive price information. In our context,
the fact that the magnitude of belief changes scales with the perception gap, rather than being a
constant shift across respondents, helps rule out interpretations based purely on generic salience or
experimenter demand. Instead, it suggests that respondents treat LSL inventory information as a

noisy signal and incorporate it in a reasonably disciplined way.

5.4 Heterogeneity

This section outlines the heterogeneity analyses we plan to carry out once we complete the fielding.
Our experimental design provides several natural dimensions of heterogeneity. First, because the
sample spans four distinct cities (with Minneapolis to be added), we can ask whether the impact
of disclosure differs across water systems with different LSL prevalence, regulatory histories, and
communication practices. In the completed paper, we will present estimates of equation (1) allowing
the treatment—lead interaction to vary by city and will relate these differences to features of local
implementation.

Second, we will explore heterogeneity by baseline vulnerability and information environment.
This includes interactions with household income, the presence of young children, education,
race/ethnicity, baseline beliefs, and confidence. These analyses will shed light on whether more
disadvantaged or more uncertain households react more strongly to individualized proxy informa-
tion, and whether disclosure narrows or widens existing gaps in defensive investments.

Third, we will examine whether the shift from filters to inspections among lead households is
concentrated among those with significant ex ante perception gaps, as the model suggests. Estimat-
ing equation (1) with interactions between treatment assignment and terciles of the perception-gap

distribution will allow us to test whether households who were initially most misinformed reallocate
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defensive resources more aggressively when confronted with building-specific LSL records.
The combination of these heterogeneity analyses will enable us to speak not only to the average
effects of LSL disclosure but also to its distributional consequences and the potential for targeted

information or subsidies to enhance both efficiency and equity in future LSL replacement programs.

5.5 Welfare Calculations and Policy Implications

Our results bear directly on LSL replacement policy design. The 2021 Infrastructure Investment
and Jobs Act allocates $15 billion for LSL replacement, while LCRR mandates inventory disclosure
but remains largely silent on complementary policies. We discuss three implications.

First, inventory disclosure generates welfare gains through correcting the WTP of mis-priced
goods. Prior to the intervention, non-lead households held diffuse, unrealistically pessimistic priors
that induced a positive valuation for a mitigation good they did not technically need. The informa-
tion shock compresses this deadweight loss by reducing wasteful filter expenditure by about $8 per
non-lead household and reducing inspection WTP by about $7 per non-lead household. Applied
to roughly 928,000 non-lead service lines in our five-city study area, these two channels together
correspond to avoided inefficient defensive expenditures on the order of $13.9 million. On the di-
agnostic margin, lead households reveal an average post-intervention increase of about $9 in WTP
for a professional inspection, implying that subsidized testing could unlock roughly $3.5 million in
latent demand across the approximately 385, 000 lead parcels. Taken together, these three channels
alone suggest a minimum static social value of ~ $17 million in our sample cities alone, even before
accounting for health improvements, permanent pipe replacement, or general equilibrium effects.

Second, liquidity constraints likely bind for vulnerable households. Table 4 shows lead house-
holds are lower-income and disproportionately non-White, consistent with environmental justice
literature (Banzhaf et al., 2019). Despite these tighter budgets, lead households exhibit high in-
spection WTP (~ $76) when provided experimental endowments of $150. This suggests the barrier
to exposure assessment might not be a lack of valuation but the budget constraint. Market-based
solutions that rely on households purchasing their own tests post-disclosure may therefore be regres-
sive. An optimal policy should couple inventory disclosure with subsidized verification for identified
lead households.

Third, disclosure should be paired with salient communication. Our intervention provides crisp,
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individualized information attributed to official city records. Real-world LCRR implementation
varies widely in salience: some utilities mail postcards; others bury inventories on an online search
portal. Our results suggest disclosure matters but only if households actually receive and attend

to the information.

6 Conclusion

This paper examines how proxy-based, individualized environmental information shapes beliefs
and defensive investments in the context of waterborne lead exposure. Leveraging parcel-level
service line inventories that U.S. cities assembled under EPA’s Lead and Copper Rule Revision,
we design and implement a pre-registered, within-city randomized experiment in five large urban
systems. The intervention discloses respondents’ building-specific LSL status and, before and after
disclosure, elicits beliefs about having an LSL and tap-water exceedances, confidence, and incentive-
compatible WTP for a pitcher filter and for a professional kitchen-tap inspection. A stylized model
links disclosure-induced shifts in the perceived mean and variance of contamination to demand for
mitigation and individualized exposure assessment.

Three main empirical findings emerge. First, individualized disclosure induces sharp belief
updating: among homes recorded as having an LSL, the perceived probability of having an LSL
rises substantially relative to non-lead homes, and belief confidence increases across the treated
sample. These patterns are consistent with Bayesian learning from a high-signal proxy, in line with
evidence on environmental information and belief revision in other settings (Neidell, 2010; Barwick
et al., 2024; Conell-Price and Mulder, 2024). Second, disclosure reallocates defensive effort away
from generic mitigation and toward diagnostics. On average, filter WTP falls, while inspection
WTP rises for lead-address households relative to non-lead households, consistent with the idea
that households facing higher perceived mean risk and reduced uncertainty place greater value on
precise information. Third, these patterns are robust to alternative specifications, including post-
on-pre formulations and updating-based parametrizations using the perception gap between priors
and inventory records. Together, we conclude that the LSL disclosure generates a minimum social
value of ~ $17 million in our sample cities.

The model developed in Section 3 helps organize these findings. With quasi-linear preferences,
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filter WTP is a function of the perceived distribution of contamination: under linear damages,
it depends on the perceived mean alone and rises with that mean; under quadratic damages, it
increases in both the mean and the variance of perceived contamination. Inspection WTP equals
the ex-ante value of information and is positive only when observing the true state would change
optimal mitigation; in regions where beliefs place the household at a corner (always mitigate fully or
never mitigate), the model predicts zero demand for inspection. In intermediate regions, inspection
WTP reflects a trade-off between a mean effect (higher perceived risk raises the value of updating)
and a variance effect (a more diffuse prior raises the value of updating). The empirical pattern
that inspection WTP increases most for lead households—for whom disclosure plausibly raises the
perceived mean while tightening beliefs—is consistent with the model’s comparative statics. Taken
together with the perception-gap regressions, these patterns place our findings squarely within
a broader body of work documenting disciplined belief updating in response to information (e.g.
Armantier et al., 2016). They also highlight that confidence is an elastic object influenced by signals
in ways reminiscent of experimental evidence on self-confidence management (Mobius et al., 2022).
At the same time, the fact that average filter WTP falls, especially among non-lead households,
suggests that many participants were either overestimating risk ex ante or viewing the pitcher as a
partial substitute for information, features that lie outside the simplest versions of the model but
are natural once one allows for budget constraints, pre-existing mitigation, or complementarities
between testing and subsequent investments.

Normatively, our results bear directly on current policy debates. The United States is poised
to spend tens of billions of dollars over the coming decade to identify and replace LSLs, combining
federal infrastructure funding with state and local programs (USEPA, 2023). Knowing where lead
pipes are is a necessary input into any efficient replacement strategy, but it is not sufficient: the
welfare returns to these investments depend on whether households understand their risk and
adjust behavior accordingly. Our experiment shows that inventory-based disclosure can realign
beliefs with the underlying infrastructure and shift demand toward individualized diagnostics when
risk is elevated, while discouraging low-return mitigation when risk is low. These features are
desirable from a welfare perspective if households internalize the health benefits of accurate exposure
assessment and subsequent action, and they complement the large body of evidence documenting

the long-run harms of lead exposure for health and human capital (e.g., Aizer et al., 2018; Clay
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et al., 2014; Dave and Yang, 2022; Hollingsworth et al., 2022; Marcus, 2023). From a policy design
standpoint, our findings suggest that pairing inventory disclosure with subsidized testing, targeted
outreach in lead-dense neighborhoods, and ultimately subsidized replacement could yield more
cost-effective and equitable reductions in exposure than either information or subsidies alone.

In terms of external validity, our findings likely generalize to other settings where regulators
disclose infrastructure risk factors rather than direct pollution measurements (e.g., flood zone des-
ignations and proximity to Superfund sites). In each case, households receive a proxy signal and
must decide whether to invest in diagnostics or stopgap mitigation. Our finding that proxy dis-
closure triggers demand for verification suggests information policy design should anticipate this
complementarity. Pairing disclosure with subsidized diagnostics may be more cost-effective than
disclosure alone.

Finally, our results demonstrate a critical environmental justice dimension of the LCRR. We
document that households with lead service lines are systematically lower-income and less likely to
be White (see Table 4). Despite these tighter budget constraints, these households exhibited a high
WTP for professional inspections (~$16) when provided with the inventory data and the liquidity
of the experimental endowment. This suggests that the primary barrier to exposure assessment in
vulnerable communities may not be a lack of valuation or awareness, but a liquidity constraint.
Market-based solutions that rely on households purchasing their own tests after disclosure may
therefore be regressive. Optimal policy design should likely couple inventory disclosure with sub-
sidized verification for identified “lead” households to close the gap between the desire for safety
and the ability to pay.

Several open questions remain and point to a broader research agenda on waterborne lead and
information. It is important to note that our $17 million estimate is a lower bound. It excludes
(1) health benefits from improved mitigation and eventual pipe replacement, (2) option value of
information for future decisions, (3) spillovers to untreated neighbors, and (4) general equilibrium
effects on property values. Back-of-the-envelope calculations using epidemiological dose-response
functions (e.g., Hollingsworth and Rudik, 2021; Keiser et al., 2023) suggest the health benefits of
targeted replacement could dwarf our measured WTP changes. However, our experiment focuses on
short-run responses to a one-time disclosure. Linking public disclosure and experimentally elicited

WTPs to administrative data on actual tap-water testing, filter adoption, or enrollment in LSL
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replacement programs would tighten the connection between stated and revealed preferences and
sharpen the welfare calculus. Understanding how beliefs, confidence, and defensive investments
evolve as households receive repeated inventory notifications, local outreach, and program offers is
also an important topic for future work. Our results provide one step toward filling this gap and
illustrate how experimental variation in disclosure guided by theory can be used to evaluate and

improve information policies in drinking-water regulation.
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Figures and Tables

Figures

Screening: (1) Use tap water as primary source.
(2)Match address to service line record

Baseline: Demographics, housing, water use

Pre-intervention: Beliefs & WTPs

randomized within city randomized within city

( )

! v

Control: General info Treated: General info + Building-specific lead status

S~ —

Post-intervention: Repeat questions on beliefs & WTPs

Additional questions: Trust for info, perceived filter effectiveness, open-
ended why questions, perceived health damage, future water use plan

Figure 1: Survey Flow of the Experiment
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Treatment—Lead
Your Water Service Line Information

According to official public records from the city, at least a portion of your water service line is made of

LEAD.

Treatment—Non-lead
Your Water Service Line Information

According to official public records from the city, your water service line is completely made of
NON-LEAD MATERIAL.

Control

Your Water Service Line Information
The City’s water utility maintains records about service-line materials for the properties it serves.

Figure 2: Screenshots of Intervention Messages

32



(a) (b)
Change in Perceived Change in Standard Deviation of

Likelihood of LSL Perceived Likelihood of LSL
1.0

0.50 .

0.5
0.25

0.0 ——

0.00

-0.25

-0.50 ! ! '

Change in the Perceived Likelihood of LSL
.
Change in the Standard Deviation of Perceived Likelihood of LSL

\‘ead\ Le2d 20 0% 20 \,ead

3 o
coWgm  1eig) N N
w” (e

20 20
\—ea o2y e
O WO! 0\ WON (el
co“ ho®) | WG 96\ 0\0“‘ ) 1:?'“1%\ “‘
w- (e

7_ \ .“ea 96\
e

Figure 3: Change in the perceived likelihood of LSL presence among each group. For each box-and-whisker plot,
the bottom of the box, the thick line, and the top of the box denotes the 25th, the 50th, and 75th percentile of the
distribution, respectively. The red marker indicates the mean value. Panel (a) shows the result for the change in
the percentage point belief reported before and after the information intervention, PP*** — PP"*. In Panel (b), we
treat P?"® and PP°*" as the probability of Bernoulli distribution and calculate the pre- and post-standard deviation
respectively and then calculate the change.
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Figure 4: Belief change in lead sample exceedances among each group. For each box-and-whisker plot, the bottom
of the box, the thick line, and the top of the box denote the 25th, 50th, and 75th percentiles of the distribution,
respectively. The red marker indicates the mean value. Panel (a) shows the change of perceived number of water
samples that exceed the federal limit of 0.01mg/L in 100 kitchen water samples. Panel (b) shows the change in the
confidence of that belief measured on a 1-5 scale.
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Figure 5: WTP changes among each group. For each box-and-whisker plot, the bottom of the box, the thick line,
and the top of the box denotes the 25th, the 50th, and 75th percentile of the distribution, respectively. The red
marker indicates the mean value. Panel (a) shows the change in the WTP for the pitcher-style filter. Panel (b) shows
the change in the WTP for the professional tap water lead inspection.

35



Tables

Table 1: Service line records by city and material

City Lead Non-lead Unknown  Total
. 145507 85314 142409 373230
Detroit
39% 23% 38%
. . 45875 171485 129647 347007
Indianapolis
13% 50% 37%
Milwaukee 70250 75756 14 264 160270
44% 47% 9%
. . 39674 79035 1796 120505
Minneapolis
33% 66% 1%
NYC 128918 516 840 210927 856685
15% 60% 25%
Study Area 385224 928430 399043 1712679
22% 53% 25%

Table 2: Respondents by city, material, and treatment assignment

City Material Treated Control Total
. Lead 43 45 88
Detroit 31.6% 33.1% 64.7%
Non-lead 22 26 48

16.2% 19.1% 35.3%

. . Lead 12 1 23
Indianapolis 16.0% 14.7% 30.7%
Non-lead 24 28 b2

32.0% 37.3% 69.3%

10 11 21

Milwaukee Lead 17.2% 19.0% 36.2%
Non-lead 18 19 37

31.0% 32.8% 63.8%

13 18 31

NYC Lead 4.3% 6.0% 10.4%
Norlead 132 136 268

44.1% 45.5% 89.6%
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Table 3: Balance between treatment arms with census benchmarks

Treated

Control

Demographics n—274 n—294 DP-value Census (4 cities)

Household Size 2.9 2.8 0.787 2.4

Household Age Mean 33.4 32.9 0.700 37.9

T

Household Income (1-6) 2.8 2.8 0.889 3.9

(830—49k) ($30-49k) (850-74k)

Respondent Male 54% 50% 0.300 48%

Respondent White 35% 43% 0.057 36%

.i_

Respondent Education (1-8) 3.5 3.5 0.808 3.6

(Some college) (Some college) (Some college)

Household Health (1-5) 3.6 3.6 0.682 NA
(Good) (Good)

Household Chronic Condition 38% 32% 0.137 NA

Notes: Treated/Control are sample means (shares for 0/1). The p-values are from Welch two-sided tests. The last column
reports official population-weighted figures across New York City, Detroit, Indianapolis, and Milwaukee. T denotes values
imputed from ACS headline shares as documented.

Table 4: Summary of demographics with census benchmarks

Demographics n]filg:g Nl?izllggd Census (4 cities)

Household Size 2.9 2.8 2.4

Household Age Mean 33.5 33.0 379

T

Household Income (1-6) 26 28 39

(830-49Kk) ($30—49Kk) (850-74k)

Respondent Male 49% 53% 48%

Respondent White 29% 43% 36%

T

Respondent Education (1-8) 3-3 36 36

(Some college) (Some college) (Some college)

Household Health (1-5) 36 30 NA
(Good) (Good)

Household Chronic Condition 31% 36% NA

Notes: Lead/Non-lead are sample means (shares for 0/1). The last column reports official population-weighted figures
across New York City, Detroit, Indianapolis, and Milwaukee. T denotes values imputed from ACS headline shares as
documented.

Table 5: Pre-treatment balance between treatment arms

Treated Control

Metrics n=274 n=294 P-value
Belief: lead 58% 56% 0.387
Belief: lead sample 23.7 27.0 0.181
Confidence: lead sample 3.8 3.9 0.825
WTP: pitcher 70.4 65.8 0.219
WTP: inspection 72.9 67.2 0.129
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Table 6: Pre-treatment outcomes between treatment x material arms

Lead Non-lead

Metrics Treated Control Treated Control
n=78 n=85 Pvalue "9 —opg P-value
Belief: lead 64% 61% 0.494 55% 54% 0.530
Belief: lead sample 314 29.2 0.651 20.6 26.1 0.053
Confidence: lead sample 3.9 3.8 0.751 3.8 3.9 0.650
WTP: pitcher 74.0 66.0 0.203 69.0 65.8 0.481
WTP: inspection 66.5 69.9 0.542 75.5 66.1 0.052

Notes: Values are means. p-values from Welch two-sided t-tests within each material group.

Table 7: Treatment Effects of LSL Information Disclosure (ITTs)

A(Likelihood of LSL) A(Lead Exceedance) A(Confidence) A(Filter WTP) A(Insp WTP)
(1) 2) (3) 4) )
Lead x Treatment 0.21%** 6.66 6.04 16.2%*
(0.046) (4.39) (5.22) (6.83)
Treatment -0.14%** -4.07** (.22 -8.34%* -7.26%*
(0.028) (1.98) (0.069) (3.32) (3.46)
Lead status = 1 0.042 4.05 -1.14 1.49
(0.035) (2.59) (3.67) (3.65)
LHS Mean -0.09 -1.30 0.19 -1.19 -1.42
LHS SD 0.28 21.38 0.83 31.45 35.62
City-FE Y Y Y Y Y
N 568 568 568 568 568
adj. R? 0.11 0.02 0.01 0.01 0.02

Notes. All columns run Equation (1). Heteroskedasticity-robust standard error in parenthesis (* p < 0.10, ** p < 0.05,

and *** p < 0.01).

Table 8: Treatment Effects of LSL Information Disclosure (ITTs) w/ Controls

A(Likelihood of LSL)  A(Lead Exceedance) A(Confidence) A(Filter WTP) A(Insp WTP)
(1) (2) (3) (4) (5)
Lead x Treatment 0.21 %% 6.50 5.75 16.0%*
(0.046) (4.41) (5.18) (6.84)
Treatment -0.14*%* -4.05%* 0.22%%* -8.26** -7.20%*
(0.028) (1.96) (0.069) (3.32) (3.45)
Lead status = 1 0.041 4.15 -1.26 1.36
(0.036) (2.57) (3.68) (3.70)
LHS Mean -0.09 -1.30 0.19 -1.19 -1.42
LHS SD 0.28 21.38 0.83 31.45 35.62
City-FE Y Y Y Y Y
Control Y Y Y Y Y
N 568 568 568 568 568
adj. R2 0.11 0.03 0.01 0.01 0.02

Notes. All columns control for household income and the presence of a household member aged 0-10. Heteroskedasticity-
robust standard error in parenthesis (* p < 0.10, ** p < 0.05, and *** p < 0.01)

38



Table 9: Treatment Effects of Disclosure: Regressing Post on Prior

Posterior Posterior Posterior Posterior Posterior
LSL Likelihood Lead Exceedance Confidence Filter WTP Insp WTP
(1) (2) (3) (4) (5)

Lead x Treatment 0.21%** 8.92%* 6.99 13.1%*

(0.042) (3.96) (4.99) (6.64)
Treatment -0.14%** -5 7% 0.21%** STT1HE -4.95

(0.026) (1.80) (0.059) (3.22) (3.27)
Lead status = 1 0.060* 3.32 -1.65 1.99

(0.032) (2.55) (3.46) (3.56)
Pre Likelihood 0.60***

(0.043)
Pre Exceedance 0.68%**

(0.045)
Pre Confidence 0.56%**
(0.040)
Pre Filter WTP 0.80%**
(0.054)
Pre Insp WTP 0.75%**
(0.056)

LHS Mean 0.48 24.11 4.03 66.86 68.53
LHS SD 0.31 28.52 0.90 46.88 48.00
City-FE Y Y Y Y Y
N 568 568 568 568 568
adj. R? 0.39 0.56 0.39 0.59 0.51

Notes. All columns run Equation (2).
p < 0.10, ** p < 0.05, and *** p < 0.01)

Heteroskedasticity-robust standard error in parenthesis (
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Table 10: Treatment Effects of Disclosure: Learning Rate

A(Likelihood of LSL) A(Lead Exceedance)  A(Confidence)
(1) (2) (3) 4) (5) (6)

Lead x Treatment 0.217%%* 6.66
(0.046) (4.39)
Perception gap x Treatment 0.20*** 8.84**
(0.047) (3.82)
Abs(Perc Gap) x Treatment -0.079
(0.25)
Treatment -0.14%** -0.021 -4.07*%* 0.45 0.22%**  (.26%*
(0.028)  (0.023)  (1.98)  (218)  (0.069) (0.14)
Lead status = 1 0.042 4.05
(0.035) (2.59)
Perception gap 0.13%%* 1.77
(0.033) (2.61)
Abs(Perception Gap) -0.021
(0.20)
LHS Mean -0.09 -0.09 -1.30 -1.30 0.19 0.19
LHS SD 0.28 0.28 21.38 21.38 0.83 0.83
City-FE Y Y Y Y Y Y
N 568 568 568 568 568 568
adj. R? 0.11 0.21 0.02 0.03 0.01 0.01

Notes. Columns (1), (3), (5) run Equation (1). Columns (2), (4), (6) run Equation (3). Column
(6) uses the absolute value of G; in Equation (3). Heteroskedasticity-robust standard error in
parenthesis (* p < 0.10, ** p < 0.05, and *** p < 0.01)
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Appendices

A Additional Results

A.1 Additional Figures

40
- Recall Accuracy
c
3 I Incorrect Recall
O Correct Recall

NA
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0o =
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Perceived Likelihood of LSL (Pre-Intervention)

Figure A1: Pre-intervention perceived likelihood of LSL presence by the status of whether respondent could recall
correctly about the service line material type information if they self-reported that they had been notified by the
utility. Gray represents respondents who either reported no notification or were unable to recall the service line
material. Green indicates those who reported being notified and correctly recalled the material type. Red shows the
distribution for those who reported being notified but recalled the material type incorrectly.
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A.2 Additional Tables

Table Al: Self-reported utility notification and recall
by city

City (Sample Size) Notified Recall Correct Recall

_ 53 51 26
Detroit (136) 39% 38% 19%
Indianapolis (75) 151; 13,1;) 12?9
Milwaukee (58) 412; 412;1 241‘;L

85 80 49
NYC (299) 28% 27% 16%

173 165 98
Study Area 30% 20% 17%

Notes. Percentages are calculated based on the number of responses
within each city, except for the last row where they are calculated
by dividing the total number of responses.

Table A2: Response Screening

p-value of Chi-square Test

Sample Size Control Treated Total for Treatment and LSL Status
All responses with treatment assigned 347 348 695 0.9142
All completes (i.e., attrition removed) 332 330 662 1.0000
Removed if duration < 10 min 306 295 601 0.8155

Removed if incorrect answer to

either of the attention checks 204 274 568 0.9807

Notes. (1) The treatment assignment happened right after finishing all pre-intervention questions and before the
intervention. (2) The last column reports p-values from Pearson’s Chi-square tests used to assess the independence of
treatment assignment and LSL status.
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Table A3: Other Pre- or Post- Intervention Characteristics

Metric Treated Control Treated Control p-

Mean Mean N N value
Use tap water for drinking (%) 70.44 68.71 274 294 0.655
Use tap water for cooking (%) 97.08 95.92 274 294  0.451
Any treatment of drinking tap water (%) 73.06 75.25 193 202 0.620
Any treatment of cooking tap water (%) 55.64 51.06 266 282 0.284
Treatment certified to remove lead (%) 71.78 73.08 163 182 0.789
Perceived safety of treated drinking water (1-5) 3.97 4.09 150 165 0.321
Perceived safety of treated cooking water (1-5) 3.93 4.11 192 204 0.089
ADHD diagnosis of >3.5 mcg/dL BLL 3.91 3.90 274 294 0.949
Stroke death in 10,000 adults of >3.5 mcg/dL BLL 2.22 2.23 274 294 0.884
Trust in city’s database (0-10) 6.80 6.00 274 294 0.000
Trust in city’s database for control vs
trust in info received for treated (0-10) 0.88 6.00 27d 294 0.000
Perceived effectiveness of water filter (0-10) 7.37 6.90 107 121 0.103

Notes. Water usage questions were before intervention while other questions in the table were after
all the post-intervention outcome measures, i.e., at the end of the survey.

Table A4: Perceived water safety (on 1-5 scale) regarding lead and E. Coli

Lead E. Coli
Change Posteior Change Posteior
(1) (2) 3) (4) (5) (6) (7) (8)
Lead x Treatment -0.60%** -0.62%%* -0.63%** -0.61%**
(0.18) (0.17) (0.18) (0.17)
Perception gap x Treatment -0.56%** -0.54%%* -0.52%%* -0.48%**
(0.18) (0.17) (0.16) (0.15)
Treatment 0.32%¥*%*  _0.0083  0.35%** 0.021 0.29%*** -0.040 0.28*** -0.032
(0.090)  (0.095)  (0.087)  (0.090) (0.087)  (0.089)  (0.083)  (0.085)
Lead status = 1 0.14 0.15 0.070 0.11
(0.12) (0.11) (0.12) (0.12)
Perception gap 0.12 0.22%* 0.039 0.15
(0.11) (0.11) (0.100) (0.098)
Pre lead safety 0.74%%% (. 75%%*
(0.039)  (0.040)
Pre E. Coli safety 0.79%%* (. 79%**
(0.031)  (0.031)
LHS Mean 0.03 0.03 3.63 3.63 -0.05 -0.05 3.66 3.66
LHS SD 0.94 0.94 1.22 1.22 0.92 0.92 1.37 1.37
City-FE Y Y Y Y Y Y Y Y
N 568 568 568 568 568 568 568 568
adj. R? 0.03 0.03 0.49 0.48 0.03 0.03 0.61 0.60

Notes. The questions were asked before and after the intervention, for both lead and E. coli. The response was coded
on a 1-5 scale: (1) Very unhealthy for all people, requiring immediate intervention; (2) Unhealthy for all people; (3)
Unbhealthy for sensitive people such as children, the elderly, or individuals with health conditions; (4) Acceptable, but
some health concerns; and (5) No health risk. Heteroskedasticity-robust standard error in parenthesis (* p < 0.10, **
p < 0.05, and *** p < 0.01)
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B Additional Proofs

B.1 Proof for Proposition 1

The first order condition for a maximum of the expected utility in Equation (4) requires

0= U m0) = = [Eluly — 2 ew)] ~ Eu(y, w)].

The second-order condition holds because du(y — z, ew)/dz < 0.

B.2 Proof for Proposition 2

The first order condition for a maximum of expected utility in Equation (6) requires

0= 20z mu) = - Ve, ma) — Volma).

The second order condition can be confirmed by
Omaxgea u(y — c(a) — z,d(w, a))
0z

Thus, the optimal bid z*(m,,) equals the expected utility gain from acting on the realized w relative
to acting on 7y, as characterized by Equation (7).

< 0.

B.3 Proof for Lemma 1
It follows from Assumption 2 that

Vo(mw) = max E ly — c(a) +v(d)],

Vi(r,my) =—7r+E [maxy —c(a) + v(d)] .

acA

Thus, the optimal bidding in Equation (7) becomes
maxE [y — c(a) + v(d)] = -2+ E [maxy —c(a) + v(d)} ,
acA acA

which yields Equation (9)

B.4 WTP for water filter with known tap water lead level

Expected utility if bidding z knowing the tap water pollution level w is

“1 "1
U(z,w) = / —u(y —r,ew)dr +/ —u(y,w)dr
0 z T

7

1 [* z
:7’/0 u(y—r,ew)dr—k(l—%)u(y,w).
FOC is
UL w) = 1 fuly — =, ew) — uly,w)] =0
5, (7w) = — [uly — 2, ew) —u(y, w)] = 0.

The optimal bid needs to satisfy

u(y — 25 (w), ew) = u(y, w).

A4



B.5 Proof for Corollary 3

The linear mitigation cost assumption and the linear mitigation technology assumption in Assump-
tion 3 and the linear damage function assumption in Corollary 3 yield

Vo(mw) = max y + (Bu — c)a — Bu
a€(0,1]

Vi(my) =E [max y+ (fw —c)a— pw| .
a€l0,1]

Further,

Vomw):{y‘ﬁ“ < c/f
y—c ifpu>c/p

- c/B
V() = / (y — B) fw)dw

—00

+ / (B =) = ) S

-5 [ witwdo [ :ww — o) f(w)dw

=y — B+ //B(ﬁw —c)f(w)dw

Thus, by Equation (9),

25 (my) = {

Then, applying Assumption 4, the uniform distribution of .

fcc;og(ﬁw — o) f(w)dw if u<c/p
fco/oﬁ(ﬁw —co)f(w)dw — (Bu—c) if p>c/p

1. If I > ¢/B, then p > ¢/B. Thus, applying the second case in Equation (11),
m) = [ (B =) f(w)dw = (B = 0) = (Bu— ) = (B =) = 0

If u < ¢/B, then u < ¢/B. Applying the first case in Equation (11), because the support of
the m,, does not overlap with (¢/8,00), 2*(m,) = 0.

2. Ifl<c/p <u

(a) When p <¢/p,

u 1 1 2 2
2*(%):uél//ﬁwdw_CU—l(u_c/B):u—l[ﬁu_Cu+]

Thus,

07" (my) 1
on = —(Bu—c)
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(b) When u > ¢/p,

. 1 Bu? c?
Z(mw) _u—l[Ti U+Tﬁ2] (Bp—c)
Thus,
0Z* () 1 1
_ _ —B=_—"_(B] -
T R e (G
(c¢) For both cases
0z" (mw) V3 2 2
= 3 — 2¢i). 12
% (u_l)g( Bo® — Bu” + 2cp) (12)
Please see the stepwise derivation in Appendix B.5.1. The necessary and sufficient
condition for 2% (”w) >0 is
1 1 2c
2 2
— —2cp) = = - —). 13
>35(ﬁu cpL) 3u( 5) (13)
A sufficient condition for the inequality in 13 is g — 2¢ < 0 because o2 > 0. Because

2¢/B > ¢f3, this sufficient condition always holds when u < ¢/f.

B.5.1 Derivation of Equation (12)

0z"(my) 0 1 [,Bu2 ]
do Odou—1" 2 cu

:[L\/i(ﬁlﬂ_c )+7(\fﬂu—\fc)]
= (VBB + 2V Beu + V3Bu® — VBul — VBeu + V]

— (e pul

_ f 5 (e — B+ V30) (11— V30))

N (u\iglh (380° — Bu” + 2cp)

B.6 WTP for inspection with quadratic damage function

Let g(a,w?) = y — ca — w?(1 — a)?. The damage functional form assumption in Corollary 4 yields

Vo(my) = E )] = Ely — ca — Bw*(1 — a)?
o(mw) Jnax [9(a, w™)] = Joax Ely [y — ca — pw (1 —a)7]

= max y — ca — B(p? + 0?)(1 — a)* = max g(a,p* + 0?)

a€l0,1] a€[0,1]
2
_ 0,2 2\[q — (1 — 2 _ ¢
Jue =Bl +o)la— (= ool TV =t sy (14)
Vi(my) = E| max g(a, w?)] = E{max y — ca - Buw?(1 - a)?]
2
_ — Buwla — (1 — € _
_E[J?[%E Bw?la — (1 25102)] +y C+45 5]

A6



1. Assume [? > %, then

([P Sy DL A |
2312 26(u? + o?) 25u?
Thus, Equations in (14) yields
~ C2
Vo(mw) =y —
O(Ww) y—c+ 45(M2+02)
Vi) =Ely — e+~ =y — e+ S (DL 1
2 1

Then by Equation (9),
2 1 1 ] c? 402

~%k - — = — .
z (Ww) = 4B[H2730_2 M2+U2 4BM4—2M202—3O’4

Thus,
0Z* (my) _i —16p0?(u? — o)
ou 4B (u* —2u20? — 304)2°

Therefore %;w) < 0 under the assumption p > V3o. In addition,
0z (my) A(p* — 2u20? — 30*) — (=242 — 602)40?
oo 4P (u* —2p%0% — 304)?
2 4t 4+ 120*
c pot oo > 0.

T4B (uf — 2207 — 30%)?

2. Assume u? < %, then

c c c
— <1- <l-—=<0.
2312 26(u? + o?) 28u?

1

Thus, Equations in (14) yields
Vo(mw) =9(0,1° +0%) =y = B(u* + 0°),
Vi(mw) =E[g(0,w?)] = Ely — fuw?] =y — B(1* + 0?).

Thus, z*(mw) = 0.

AT
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