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Abstract

This paper estimates the local welfare effects of hyperscale data centers as revealed through
housing-market capitalization. We construct a panel dataset linking geocoded residential prop-
erty transactions to the opening dates of hyperscale data centers and employ a difference-in-
differences design that compares properties located within 5 km of a newly opened facility to
properties located 20-50 km away. We find that hyperscale openings reduce nearby housing
prices by approximately 6.8 percent on average, with a steep distance gradient: effects are
largest within 1 km and dissipate to zero beyond 12 km. Consistent with hyperscale facilities
being capital-intensive and labor-light, we find limited evidence of sustained increases in local
employment or wages. In contrast, we document increases in residential electricity costs in
host areas after commissioning. The results imply a localized welfare loss of $3.6 billion for
communities hosting hyperscale digital infrastructure.
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1 Introduction

Digital infrastructure has expanded rapidly across U.S. localities, driven by growth in cloud ser-
vices and the increasing computational intensity of artificial intelligence workloads. Data centers
represent the foundational infrastructure for digital services that individuals, businesses, and gov-
ernments rely on every day. Projections indicate that by 2030, companies will invest nearly $7
trillion in capital expenditures on data center infrastructure globally.! A prominent feature of this
expansion is the rise of hyperscale data centers—large, power-intensive facilities that concentrate
high-performance computing equipment and require substantial supporting infrastructure. Local
governments frequently court these facilities with tax incentives and zoning accommodations, mo-
tivated by the expectation that hyperscale investments will anchor local economic development.
However, hyperscale data centers present a distinctive economic profile. Despite their scale and
capital intensity, they generate minimal direct employment once operational, while potentially im-
posing localized costs through electricity-grid strain, water demand, and environmental externalities
(Mytton (2021); Shehabi et al. (2024); Siddik et al. (2021)).

This paper provides national-level evidence on the net local welfare impacts of hyperscale data
centers as revealed through housing-market capitalization. The relationship between data center
development and local welfare is theoretically ambiguous. On the one hand, data centers have
proven to be a lucrative business, contributing billions of dollars in tax revenue. Although they do
not create substantial jobs, data centers may induce local investments that indirectly contribute to
the labor market.? On the other hand, data center operations may impose local disamenities, which
can adversely affect residents’ quality of life. We ask whether proximity to hyperscale facilities is
valued as a net amenity, reflecting fiscal spillovers and local demand increases, or instead as a net
disamenity due to infrastructure costs and quality-of-life impacts.

To evaluate the net welfare effect, we examine housing-market capitalization as it captures
homeowners’ willingness-to-pay for localized net externalities. We combine proprietary data on
data center locations, commissioning dates, and technical characteristics with nationwide residen-

tial transaction records and local economic outcomes. Our empirical strategy employs a stacked

1See, The cost of compute: A $7 trillion race to scale data centers.
2For example, in Virginia, large-scale data center development has coincided with increased investment in renew-
able energy infrastructure and the clustering of technology firms. See, 2024 Virginia Data Center Report.
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difference-in-differences event-study design that exploits the openings of data centers. For each
opening, we compare transactions within a near ring (within 5 km) to those within an outer
ring (20 — 50 km) around the same facility, absorbing granular county-by-time shocks within each
stacked cohort. The identifying assumption is that, absent commissioning, prices in the near and
outer rings would have followed parallel trends conditional on fixed effects and transaction and
property covariates.

We find that hyperscale facilities function as localized disamenities. In our preferred specifica-
tion, transaction prices within 5 km fall by approximately 6.8 percent following the commissioning
of a hyperscale facility. Event-time estimates show no detectable pre-trends and a decline that
emerges within two years of opening and grows in magnitude several years later, consistent with
capitalization as operations ramp up and local housing markets adjust. The negative capitalization
effects exhibit a sharp distance gradient: the largest declines occur within 1 km, attenuate with
distance, and become indistinguishable from zero beyond roughly 12 km. Moreover, the effects are
concentrated around the largest facilities operated by major technology firms, suggesting that the
scale and intensity of operations are key drivers of the observed housing market effects rather than
data center entry per se.

We probe mechanisms to distinguish between offsetting demand-side benefits and localized cost
channels. Using county-level employment and wage outcomes, we find no statistically meaning-
ful evidence of sustained increases in local employment or wages following hyperscale openings
across industries and income brackets. This pattern is consistent with hyperscale operations’ being
capital-intensive and highly automated, which limits labor-demand spillovers to the surrounding
area. In contrast, we find evidence consistent with the pass-through of infrastructure costs. Using
Census-tract measures of residential electricity costs, event-study estimates show a discrete up-
ward shift (2%) after hyperscale opening that remains elevated for multiple years, while water-cost
responses are smaller and less precisely estimated. Taken together, the evidence points to local-
ized infrastructure and quality-of-life costs that are salient to nearby residents and capitalized into
housing values.

The steep distance gradient in housing price declines, together with rising utility costs, suggests
that quality-of-life deterioration is a primary driver of home devaluation near hyperscale data

centers. Furthermore, the absence of an employment and income boom explains why there is a



limited positive shock to local housing demand to offset the negative externalities associated with
data center operations. While a potential increase in local tax revenue could translate into improved
public services or lower taxes that benefit local homeowners, any such benefits appear too small to
offset the direct adverse effects on home values in the short run.

These findings contribute to several strands of economics literature. First, we add to the hedonic
valuation of localized industrial and infrastructure disamenities by treating hyperscale data centers
as a distinct form of land use whose externalities arise from resource-intensive operations and sup-
porting infrastructure. Previous work has documented negative housing capitalizations for a whole
host of externalities in the industrial economy, including pollution (e.g., Bishop et al. (2020); Bui
and Mayer (2003); Currie et al. (2015); Greenstone and Gallagher (2008)), electricity infrastruc-
ture (e.g., Davis (2011); Droes and Koster (2016); Fraenkel et al. (2024); Hamilton and Schwann
(1995); Heintzelman and Tuttle (2012); Hu et al. (2025); Zou (2020)), and resource development
(e.g., Bartik et al. (2019); Gopalakrishnan and Klaiber (2014); Muehlenbachs et al. (2015)). We
contribute to the emerging literature on the rapid development of digital infrastructure. Relatedly,
we inform debates on the spatial incidence of place-based economic development policies (Allcott
and Keniston (2018); Kline and Moretti (2014); Moretti (2010); Zheng et al. (2017)). While local
governments often subsidize high-tech investments, our evidence suggests that, for labor-light digi-
tal infrastructure, localized costs borne by nearby residents can be substantial relative to observable
local labor-market gains, raising distributional concerns for host communities.

We also contribute to the growing literature on the economic impacts of artificial intelligence.
Prior work shows that AI investment is associated with higher firm growth (e.g., Babina et al.
(2024); Chen et al. (2019); Hirvonen et al. (2022); Rock (2019)) and disruption to labor markets
(e.g., Babina et al. (2023); Grennan and Michaely (2020); Abis and Veldkamp (2024); Cao et al.
(2024); Acemoglu et al. (2022); Cockburn et al. (2018); Hirvonen et al. (2022)). The adoption of
AT also reduces behavioral biases in trading decisions (e.g., D’Acunto et al. (2019)) and improves
loan underwriting performance, but may increase disparities between minority and non-minority
borrowers (e.g., Jansen et al. (2020); Fuster et al. (2022)). However, there is little evidence on
the local welfare effects of data centers, which are the backbone of the Al industry. Feher et al.
(2025) study the effects of data centers on local electricity prices, firm outcomes, and carbon dioxide

emissions and find no detectable effects. We differ from those studies by focusing on hyperscale



data centers, which are substantially larger and more power-intensive. Our results show that these
facilities generate significant welfare losses for nearby homeowners.

The remainder of the paper proceeds as follows. Section 2 provides background on hyperscale
data centers and potential channels of local impacts. Section 3 describes the data and sample
construction. Section 4 outlines the empirical strategy. Section 5 presents the results, and Section

6 concludes.

2 Background

To understand why a facility ostensibly dedicated to the background processing of digital informa-
tion might impact local housing markets, it is necessary to examine the physical and operational
reality of the burgeoning U.S. digital infrastructure. The data center industry has evolved from
small, on-premise server rooms located within corporate office buildings to massive, dedicated fa-
cilities. The hyperscale designation refers to a nascent class of data center architectures designed
for massive scalability, cloud computing, big-data processing, and artificial intelligence workloads.
Industry consensus loosely defines hyperscale data centers as ones with thousands of server units
collocated in massive compounds. Physically, hyperscale data centers resemble massive distribution
warehouses, often appearing as windowless, concrete boxes spanning tens to hundreds of thousands
of square feet of floor space. In our empirical work, we operationalize hyperscale using facility
classifications and power-capacity measures from our data, and we show in robustness analyses
that the estimated effects are concentrated among the largest-capacity sites.

While the size and specifications of hyperscale data centers exhibit high variance, the defining
characteristic is their voracious appetite for resources. Conducting complex cloud computing and
training large language models requires clusters of high-performance Graphics Processing Units that
run at much higher thermal densities than traditional Central Processing Units. Housing thousands
of such clusters under one roof requires substantial redundant power. In practice, hyperscale
data centers are distinguished from smaller data centers by the sheer scale of resources required
for daily operation, with individual campuses now frequently exceeding 100 megawatts of power
capacity (Shehabi et al., 2024). The additional burden on the local electricity grids necessitates the

construction of dedicated high-voltage substations and transmission lines, which are themselves



known disamenities associated with visual blight (Hamilton and Schwann, 1995). The costs of
these upgrades can be socialized across the entire ratepayer base, leading to higher electricity bills
for nearby residents. Siting data centers in capacity-constrained areas can also increase the risk
of brownouts or necessitate procuring additional generation capacity and operating peaker plants,
which can be dirtier and more expensive (Holland and Mansur, 2008).

Cooling requirements further concentrate externalities locally. Because the electrical energy
consumed by servers is converted largely into heat, thermal management is a core operational
constraint. While some newer facilities experiment with liquid immersion cooling, the industry
standard for large-scale facilities remains evaporative cooling, which uses large cooling towers to
evaporate water and reject heat into the atmosphere. A typical hyperscale data center can consume
millions of gallons of water per day, equivalent to the supply of a small U.S. city (Mytton, 2021;
Shehabi et al., 2024; Siddik et al., 2021). The high water demand places data centers in direct
competition with residential and agricultural water needs. Visually, hyperscale data centers can
produce large vapor plumes, which neighbors may perceive as industrial air pollution.

Another common, major complaint from residents living near data centers is noise pollution
(e.g., Cary (2023)). Unlike the intermittent noise of traffic or airplanes, data center noise is constant,
low-frequency, and often tonal. It emanates from the banks of industrial chillers, rooftop air-
handling units, cooling-tower fans, and diesel backup generators, which are required to ensure
extended uptime (Carlson and Teplitzky, 1974; Ellis, 1971; Zhouo et al., 2020). Low-frequency
noise is particularly problematic because it can travel long distances with little attenuation and
penetrate standard residential walls. Psychoacoustic research suggests that such constant, tonal
noise is hazardous to human health (e.g., Basner et al. (2014); Broner and Leventhall (1983);
Miedema and Vos (2003); Muzet (2007); Zou (2020)).

Despite these potential localized costs, municipalities routinely offer generous tax abatements
and expedited permitting to attract hyperscale investments. These policies are typically justified
by the prospect of job creation, local multipliers, and enhanced economic dynamism. However,
hyperscale facilities are highly automated and employ relatively few workers once operational,
which limits the scope for labor-market spillovers relative to traditional industrial anchors. As
a result, the net local welfare effect is theoretically ambiguous: fiscal benefits and any broader

agglomeration effects may be offset—potentially more than offset—Dby localized disamenities borne



by nearby residents. The empirical analysis below evaluates this net effect using housing-market

capitalization and complementary evidence on labor markets and utility costs.

3 Data

3.1 Data Center Openings Database

We obtain detailed facility-level information on U.S. data centers from the S&P Global 451 Re-
search Global Database Knowledge Base. The database records a wide range of characteristics
for each facility, including geocoordinates, construction year and/or operational year, data center
type (e.g., retail, colocation, hyperscale), power capacity and utilization, operational and utilized
floor space, and the operating company and facility owner. Figure 1 maps data center construction
over the years across the contiguous United States. Our final sample includes all data centers
with non-missing geocoordinates and a non-missing construction year or operational year. We de-
fine the treatment event as the facility commissioning (operational) year whenever available; when

commissioning dates are missing, we use construction year as the closest proxy.

3.2 Residential Property Transactions

We obtain housing transaction data from CoreLogic, a widely used commercial database of U.S.
property sales compiled from public deed and assessor sources. The data contain property-level
sale records, including transaction price and date, along with a rich set of transaction and property
characteristics. We apply several filters. First, we restrict the sample to residential properties
(single-family homes, condominiums, duplexes, and apartments). Second, we retain arm’s-length
transactions and exclude intra-family transfers. We study transactions from 2000-2025 and con-
struct inflation-adjusted sale prices expressed in 2010 dollars. To estimate the effects of data center
proximity, we construct a stacked sample around each data center. For each facility, we retain
transactions within a 50 km radius, classify properties within 5 km as treated, and use properties
20-50 km away as controls to limit potential spillovers in the baseline specification; in robustness
checks, we reintroduce this intermediate band and vary the distance cutoffs.

We repeat this procedure for each data center and stack the resulting subsamples into a single

estimation dataset. To address overlapping catchments and clustered facilities, we impose two



additional restrictions. First, if a property is exposed to multiple data centers over time, treatment
is assigned based on the first exposure. Second, we exclude from the control group any transactions
occurring within 20 km of any data center, ensuring that control observations are not plausibly
affected by nearby facilities. The final estimation sample stacks all subsamples after applying these

filters.

3.3 Census and Other Data

We obtain local community characteristics at the census tract level to examine heterogeneity and
explore potential mechanisms. Using the American Community Survey (ACS) 5-year estimates
(2006-2019) and the 2000 and 2010 Decennial Censuses, we compile tract-level demographic and
socioeconomic measures, including population, income, racial composition, and local utility prices.
To assess local economic impacts, we draw on two sources of employment and wage data. First, the
Longitudinal Employer-Household Dynamics (LEHD) program’s Origin—Destination Employment
Statistics (LODES) provide annual employment counts by workplace location (census tract) and
industry, allowing us to measure overall employment as well as data-center-related employment in
each tract. As a robustness check, we aggregate employment outcomes to the county level and use
the Bureau of Labor Statistics (BLS) Quarterly Census of Employment and Wages (QCEW) as an
alternative county-level source. From QCEW, we extract total covered employment and average
weekly wages by county-year across industry sectors.

We collect water utility service-area boundaries from SimpleLab’s TEMM (Tiered Explicit,
Match, and Model) dataset, which compiles a nationwide layer of community water-system geogra-
phies by assigning each system the highest-fidelity boundary available: (i) explicit polygons from
state or utility sources when available; (ii) matched U.S. Census place polygons when an acceptable
one-to-one match exists; and (iii) otherwise, modeled circular service areas centered on the best-
available system centroid using a statistical model trained on labeled systems. We link TEMM to
the housing transactions via a spatial join: each geocoded transaction is assigned the water-system
boundary that contains its location, with unmatched transactions flagged accordingly.

To characterize the seasonal directionality of potential data-center externalities, we use near-
surface wind vectors from the North American Regional Reanalysis (NARR), obtained from the U.S.

National Oceanic and Atmospheric Administration’s Physical Sciences Laboratory. The NARR



provides gridded long-term monthly mean winds at a height of 10 meters over North America,
reported as horizontal and vertical components in meters per second. For each hyperscale data
center site, we spatially assign the two speed measurements at the facility location and produce
an azimuth (degrees clockwise from true north) indicating the direction toward which the air is
moving. We then compute the great-circle bearing from each data center to each parcel centroid and
construct monthly directional exposure indicators. For each calendar month, a parcel is classified
as downwind if the absolute angular difference between the parcel bearing and the site-specific
wind azimuth is within +30 degrees (i.e., a 60-degree circular sector), and vice versa for the upwind
indicator. This procedure yields 24 monthly downwind and upwind indicators for each parcel,
which we use to test whether estimated treatment effects concentrate in wind-favored directions

consistent with propagation and transport mechanisms of environmental elements.

3.4 Summary Statistics

Table 1 reports transaction-level means for sales within 5 km of a data center site and for sales
20-50 km away, separately for (i) all data centers and (ii) hyperscale data centers. When focusing
on all data centers across the United States, transactions near sites have higher mean sale prices,
but involve smaller homes and substantially older housing stock and are located in neighborhoods
with a higher Black share, lower median income, and higher unemployment. For properties near
hyperscale facilities, by contrast, mean prices are slightly lower in the near ring, while observable
housing and neighborhood characteristics are broadly similar across distance bands. Overall, these
summary statistics highlight the importance of the fixed effects and rich controls in our baseline

specification.

4 Empirical Framework

Our primary objective is to estimate the causal effect of data center openings on local housing
markets. A central identification challenge is that facility locations are not randomly assigned:
developers may select sites based on pre-existing infrastructure, growth prospects, or political-
economy considerations that are correlated with underlying housing-market trends. We address this

concern using a stacked difference-in-differences design implemented in an event-study framework,



with the unit of observation being a residential property transaction for property ¢ in year ¢.

Specifically, we construct a stacked dataset in which each event—defined as the opening of a
particular data center—forms a separate cohort of housing transactions. Within each cohort, we
classify observations as treated or control based on distance to the opening site. In the baseline
specification, treated observations are transactions within a narrow radius of the data center (<
5km). Control observations are transactions located 20-50 km from the same data center facility,
restricted to the same county and the same transaction year—month as the treated transactions.
This control-group construction is intended to capture transactions exposed to similar county-level
demographic, economic, and housing-market conditions, while remaining sufficiently distant to
avoid the facility’s immediate disamenity zone.? The identifying assumption is that, absent data
center opening, housing prices in the near and outer rings would have followed parallel trends after
conditioning on fixed effects and observable transaction and property characteristics.

Our baseline specification is specified as follows:

Yitjed = B1 - 1{Distiq < 5km} x 1{PostOpening, ; = 1} + X;J‘ +ajq+Octa+€itjed (1)

where y; ; ; . 4 is the natural log transaction price of property ¢, located in census tract j and county
¢, transacted at year-month ¢, in stacked cohort d (defined by a specific data-center opening).
Dist; 4 is the straight-line distance from the property to data center d, and PostOpening; ; equals
to one for transactions in periods after the facility d is commissioned. X;; includes a rich set of
property and transaction characteristics, ;4 are tract fixed effects, and 6.4 are county-by-time
fixed effects; all fixed effects are interacted with data center cohort d to reflect the stacked design.
The coefficient of interest, 1, captures the average differential change in prices for properties within
5 km relative to the comparison group before versus after the opening of data center d, and can be
interpreted as the capitalization of the net local amenity or disamenity associated with the facility.

We also estimate an event-study version of Equation (1) by replacing the post-opening indicator

with a set of relative-time indicators:

3We recognize that the choice of distance bands is inherently somewhat arbitrary. Accordingly, in later sections
we examine distance-gradient effects by estimating separate regressions for a series of finer, non-overlapping distance
bins (e.g., 0-1 km, 1-2 km, ..., up to 19-20 km). In the robustness section, we also vary the distance bands to ensure
consistency of results.
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K
Yitjed = Z Be1(Dist; g < 5km) x 1(YearsSinceOpen, , = £) + X{}tI‘ + g+ Octdt€itied
I=—K #—1

(2)
where 1(YearsSinceOpen, ; = £) indicates that transaction i occurs £ years relative to the opening
of data center d, and £ = —1 is omitted as the reference period. We include a full set of leads and
lags from ¢ = —25 to £ = 22 of data center opening, while maintaining the same covariates and fixed
effects as in the baseline model. To improve precision at long horizons, we bin extreme event times
by pooling all £ < —5 into a single pre-period bin and all £ > 5 into a single post-period bin. S_1,
the year immediately before opening, is omitted as the reference, so all estimates are interpreted
relative to the pre-opening year. This event-study specification both tests for differential pre-trends

and traces the dynamic evolution of capitalization effects after commissioning.

5 Results

5.1 Impact on Local Housing Markets

Table 2 reports pooled post-opening capitalization effects estimated in a stacked difference-in-
differences design that compares housing transactions within 5 km of a given data center (treated
group) to transactions in a 20-50 km ring around the same facility (control group). Columns
progressively add covariates and fixed effects to address selection in siting and contemporaneous
shocks. Panel A pools all data center facilities in the sample, while Panel B restricts attention to
hyperscale data centers.

In both panels, Column (1) presents a parsimonious specification that includes Census-tract
fixed effects and transaction year-by-month fixed effects. Tract fixed effects absorb time-invariant
neighborhood characteristics such as baseline amenity levels, long-run development patterns, while
year-by-month fixed effects control for nationwide housing-market conditions and seasonality. Col-
umn (2) adds a rich set of property and transaction controls, including structural attributes (e.g.,
type, size, age, rooms) and sale characteristics (e.g., arms-length indicators and financing). These
covariates address concerns that transaction composition differs systematically between the near

and outer rings within a cohort. In addition, we include flexible distance-to-facility fixed effects (50
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one-kilometer bins) to absorb smooth spatial gradients in prices around the site that are unrelated
to the opening itself (e.g., proximity to highways, employment centers, or industrial corridors).

Column (3) instead augments Column (1) with transaction-level controls, including indica-
tors for cash purchases, resales, short sales, and foreclosure/REO transactions; buyer and seller
characteristics (e.g., corporate status, local status); and additional controls capturing prior sale
circumstances and buyer—seller relationship indicators where available. These variables proxy for
variation in liquidity, distress, and investor activity that may covary with local market conditions
and could otherwise confound treatment effects. Column (4) includes both the property and trans-
action controls, providing a more saturated specification that jointly accounts for compositional
differences in transacted housing stock and shifts in transaction types.

Columns (5) and (6) strengthen identification by absorbing increasingly localized time-varying
shocks. Column (5) replaces the common year-by-month fixed effects with state-by-year-by-month
fixed effects, restricting identification to within-state variation and controlling for state-level housing
and non-housing shocks (e.g., policy changes, statewide labor-market conditions, or credit-market
shifts). Column (6) further replaces these with county-by-year-by-month fixed effects, thereby
netting out any county-level shocks that could jointly affect data center openings and housing
prices—such as changes in local infrastructure investment, zoning and permitting environments, or
countywide adjustments in utility rates and service provision. In this specification, identification
comes from comparing treated and control transactions within the same county and month, at
similar baseline distances, before versus after the opening.

Across specifications, the estimates are stable in both sign and magnitude. Panel A shows
economically small and statistically muted average effects when pooling all data center facilities.*
By contrast, Panel B focuses on hyperscale openings. In the preferred specification in Column
(6)—which combines rich property and transaction controls with county-by-year-by-month fixed
effects—prices for transactions within 5 km fall by 6.8% relative to the 20-50 km ring after a
hyperscale opening. The persistence of negative effects as we add high-dimensional fixed effects

and increasingly granular controls suggests that the results are not driven by coincident state- or

4One possible explanation for the muted effects when pooling all data centers is that smaller facilities generate
more localized spillovers, so a 5 km treatment radius may be too broad and may attenuate estimated impacts. To
assess this possibility, Appendix Table A-1 restricts the sample to non-hyperscale facilities and redefines treatment
using narrower distance bands (e.g., within 1 km, 1-2 km, and so on). The estimates remain economically small and
statistically indistinguishable from zero across these specifications.
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county-level housing cycles, nor by compositional shifts in the types of homes transacting near
openings. Overall, the contrast between Panels A and B implies that localized disamenities are
concentrated among hyperscale facilities. This distinction is consequential given the ongoing ex-
pansion of hyperscale capacity globally, indicating that distributional effects on nearby homeowners
may depend more on facility scale than on the presence of a data center per se.

To assess dynamic responses and probe the identifying parallel-trends assumption, we next
estimate and plot event-study coefficients. Figure 2 reports the estimated effects of hyperscale
data center openings on housing prices by event time, normalized to the year immediately prior
to opening. Pre-opening coefficients are close to zero and statistically indistinguishable from zero
over all the years preceding commissioning, providing no evidence of differential pre-trends between
the treated and control rings. After commissioning, the coefficients become negative and statisti-
cally different from zero by year 2. The decline deepens through year 4—reaching approximately
—13%—and then partially attenuates, stabilizing at roughly —5% thereafter. Overall, these dy-
namics indicate a discrete post-opening decline in nearby housing prices with limited evidence of
anticipatory adjustment, lending support to the comparability of treated and control areas and

reinforcing a causal interpretation of the stacked difference-in-differences estimates.

5.2 Distance Gradient in Price Capitalization

To assess how capitalization varies with proximity and to evaluate whether our baseline 5 km treat-
ment definition masks important heterogeneity, we re-estimate the stacked difference-in-differences
specification allowing the post-opening effect to vary flexibly across non-overlapping distance bins
(0-1 km, 1-2 km, ..., 19-20 km), using transactions in the 20-50 km ring as the reference group.
This exercise serves two purposes. First, it provides a more transparent characterization of the
spatial incidence of data center openings and helps identify the geographic scope of any externality
zone. Second, it offers an additional diagnostic for mechanisms: channels that operate primarily
at broader administrative or market levels (e.g., countywide housing demand shifts, local public-
service provision, or utility-rate changes that apply uniformly within a service territory) would not
typically generate sharp attenuation over a few kilometers.

Figure 3 reveals a steep distance gradient in housing-price responses. Homes within the first
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kilometer experience the largest devaluation, approximately 15%.° The effect attenuates to roughly
9% over the 1-4 km range and remains economically meaningful at around 5% through 4-12 km,
before declining further and becoming statistically indistinguishable from zero at larger distances.
This spatial pattern is consistent with highly localized costs that are strongest near the facility
and decay with distance, reinforcing the interpretation that the average 0-5 km estimate reflects
an aggregation of substantially larger impacts very close to the site. Substantively, the gradient
highlights that the distributional burden of hyperscale openings is concentrated among nearby
homeowners, which is directly relevant for siting decisions, buffer-zone design, and the evaluation
of place-based incentives that may generate diffuse fiscal benefits but localized housing-market costs

(e.g., Hamilton and Schwann (1995); Zou (2020)).

5.3 Robustness Checks

Alternative Staggered DD Estimators. Figure 4 assesses whether the baseline results are
sensitive to the particular staggered-adoption estimator or specification used, namely the stacked
difference-in-differences approach. The figure compares dynamic treatment effects obtained from
several staggered DiD approaches that are designed to be robust to the negative-weight and
treatment-effect-heterogeneity issues that can bias two-way fixed-effects estimators in settings with
staggered timing ((Borusyak et al. (2024); Callaway and Sant’Anna (2021); De Chaisemartin and
d’Haultfoeuille (2024); Sun and Abraham (2021))). Across methods, the qualitative conclusion
is consistent and robust. Estimated coefficients in the pre-opening window are tightly centered
around zero, with no systematic evidence of anticipatory declines prior to the operational date,
supporting the plausibility of parallel trends conditional on the fixed effects and controls. In the
post-opening period, most estimators indicate a decline in nearby house prices, with effects that
grow in magnitude over longer horizons. Although point estimates differ across procedures—for
example, the Sun and Abraham estimator yields larger effects—the dynamic pattern is similar:
modest declines in the first few years after opening, followed by larger negative effects several years
later.

Alternative Control Groups. The baseline specification defines treatment as transactions

5The corresponding standard error is relatively large due to the small number of housing transactions observed
within this narrow distance band around hyperscale facilities (slightly above 2000 transactions).
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within 5 km of a hyperscale opening and excludes an intermediate 5-20 km buffer ring from the
comparison group to mitigate spillovers. Because these distance cutoffs are necessarily somewhat ad
hoc, we conduct a set of robustness checks that vary both the treatment and comparison definitions.
Table 3 reports the results.

First, to assess sensitivity to the buffer-ring exclusion, Column (1) removes the buffer and uses
all transactions in the 5-50 km ring as controls. The estimated price decline falls to 3.4%, smaller
than the baseline 6.8%, consistent with spillovers extending beyond 5 km and attenuating through
roughly 15 km (Figure 3). Motivated by the distance-gradient evidence, Columns (2) and (3) instead
use comparison rings of 15-50 km and 15-30 km, resulting in estimate price declines of 5.6% and
5.3%, respectively. When the excluded ring is expanded by using 30-50 km as the comparison
group, the estimated decline increases to 8.9%, again align with attenuation from spillovers when
controls are drawn from closer distances.

We also consider comparison groups that do not rely solely on distance rings. Column (5)
uses “later-treated” locations—transactions within 5 km of facilities that open later in the same
county—as controls, addressing concerns that neighborhoods near data centers may differ systemat-
ically from those farther away. This specification yields an estimated price decline of 4.7%. Finally,
Column (6) defines exposure at the census-tract level, comparing tracts that ever host a hyper-
scale opening (dated to the first opening) to neighboring never-treated tracts. We find a smaller
estimated effect of —1.6%. Overall, the negative price response is robust, and the systematic atten-
uation under broader comparison rings or coarser exposure definitions reinforces the interpretation
that impacts are concentrated very near the hyperscale facilities, providing implications for siting
policy and for evaluating distributional consequences for nearby homeowners.

Alternative Definitions of Hyperscale Data Centers. In the baseline analysis, we classify
hyperscale data centers using the facility-type indicator in the raw dataset, which distinguishes
hyperscale facilities from wholesale, retail, and other categories. Here, we consider an alternative,
scale-based definition using the dataset’s measure of Total Uninterruptible Power Supply (UPS)

power.%7 Table 4 reports estimates in which the treated data centers included in the estimation

5Total UPS power measures the cumulative installed, usable UPS capacity available at the rack for client IT
equipment. Because UPS capacity must be provisioned to backstop the critical compute load—and scales with the
number of racks/servers and the facility’s engineered power density—it provides a practical proxy for data center
scale. (i.e., “IT load” supported by the facility).

"Industry and policy sources commonly characterize hyperscale facilities as supporting at least 100 MW of power
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sample are defined by progressively lower UPS-power thresholds across columns.

The results exhibit pronounced scale dependence. Restricting the sample to facilities with at
least 100 MW of UPS power yields large and precisely estimated post-opening effects: nearby hous-
ing prices decline by 13.5% (Column 1). Lowering the threshold to 80 MW produces a smaller but
still statistically significant decline of roughly 7% (Column 2). As the threshold is reduced further
(60, 40, and 20 MW, Columns 3-5), the estimates become economically small and statistically
indistinguishable from zero. Overall, the pattern suggests that the effects are concentrated among

the largest facilities.

5.4 Mechanisms

We next examine complementary outcomes to study the channels underlying the housing-market
response. The central challenge in evaluating hyperscale data center operations is the potential
for localized disamenities to be generated alongside any economic benefits. We focus on labor-
market outcomes, residential utility costs, and environmental externalities—dimensions that feature

prominently in local policy debates over data center siting and incentives.

5.4.1 The Labor Market Effect

A common justification for state and local incentives is that attracting data centers will stimulate
local economic activity—through ongoing operational activity, investment, and some permanent
employment—thereby expanding the local tax base and potentially increasing housing demand and
offsetting any localized disamenities. A contrasting view emphasizes that these facilities are highly
automated and, once constructed, require relatively few workers to operate. We therefore examine
local labor-market responses to hyperscale data center openings directly.

Using Census-block-level LODES Workplace Area Characteristics (WAC) data, we estimate
event-study specifications for employment by industry, comparing blocks within 5 km of a hyper-
scale opening (treated) to blocks 20-50 km away (controls) in a stacked difference-in-differences
setting, with distances computed using block centroids (Figure 5). The block-level estimates sug-
gest limited employment responses overall. In sectors most plausibly linked to data center opera-

tions—Utilities, Information, and Professional, Scientific, and Technical Services—we do not find

capacity (Offutt and Zhu (2025))

16



a sustained increase in employment in the first few years after facility commissioning. At longer
horizons, we observe at most a modest increase in Professional, Scientific, and Technical Services of
approximately 4%, while estimates for Utilities and Information remain close to zero. Consistent
with these patterns, we find little evidence of differential changes in employment across earnings
bins (e.g., below versus above $3,333 per month).

Employment effects may also occur through complementary activity that need not be con-
centrated in the immediate vicinity of the facility—for example, related suppliers, contractors, or
downstream users that locate elsewhere within the region. To capture such broader spillovers,
we complement the block-level analysis with county-level estimates that aggregate employment
across Census blocks within each county. In this specification, treated units are counties hosting
a hyperscale data center, and the comparison group consists of later-treated counties within the
same state.® Figure 6 illustrates the county-level event-study estimates by industry: coefficients
fluctuate around zero and confidence intervals are wide, with no persistent break at the opening
date.? We further corroborate these findings using county-level outcomes from the QCEW, includ-
ing establishment counts, employment, total wages, and average weekly wages; the corresponding
event-study estimates likewise show muted effects across these measures, both when pooling all in-
dustries and when restricting attention to the Information sector (Appendix Figure A-2). Overall,
the labor-market evidence neither points to a systematic change in employment nor a reallocation
across earnings groups that could plausibly explain the decline in housing prices documented in

Section 5.1.

5.4.2 Utility Costs

Hyperscale facilities add large, geographically concentrated electricity loads that can trigger trans-
mission upgrades, capacity procurement, and other grid investments. Because a portion of these
costs may be recovered through retail rates, hyperscale openings could increase electricity prices

faced by households. We examine this channel using Census-tract measures of average annual

8Using later-treated counties as controls leverages variation in treatment timing within the set of ultimately treated
counties, which is less vulnerable to selection on long-run growth prospects than comparisons to never-treated counties.

9As an additional robustness check, we aggregate block-level employment to commuting zones, following the liter-
ature that treats commuting zones as integrated local labor markets that capture commuting-based spillovers beyond
county boundaries. As shown in Appendix Figure A-1, the results are qualitatively unchanged, with employment
responses remaining muted after hyperscale facilities openings.
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household electricity and water costs constructed from ACS data. Figure 7 reports event-study
estimates comparing tracts hosting hyperscale facilities to surrounding non-treated tracts.'® Two
patterns emerge. First, electricity costs exhibit a clear upward shift after commissioning: post-
treatment coefficients turn positive and remain elevated (=~ 2%) for several years, while pre-period
coefficients are comparatively flat and statistically indistinguishable from zero. This pattern is con-
sistent with industry accounts that large data centers can raise procurement costs and necessitate
grid investments that are subsequently passed through to households (e.g., Blunt and Hiller (2026);
Wade et al. (2025)).

Second, water-cost responses are economically small and statistically indistinguishable from
zero, with no sustained post-opening increase. However, a prominent concern is water stress: hy-
perscale data centers may withdraw substantial volumes of water for cooling, potentially tightening
local water availability even if household water bills do not adjust in the short run as measured
in the ACS. To probe whether the housing-price effect is sensitive to water-system-level shocks,
we exploit water-service boundary data from SimpleLab TEMM and estimate specifications that
flexibly absorb water-utility variation.

In Table 5, we estimate specifications that flexibly absorb water-utility shocks by interacting
water-system boundaries with: 1) year fixed effects and 2) county-by-year fixed effects in Columns
(1) and (2), respectively. Relative to our preferred baseline estimate of 6.8%, the price impacts
attenuate sharply to 0.9 — 1.4% and become statistically insignificant. To rule out the possibility
that the attenuation reflects a reduced estimation sample size after matching transactions to water-
service boundaries, Columns (3) and (4) retain unmatched transactions by assigning a missing-
category indicator for the boundary identifier. The resulting coefficients of 0.032 and 0.007 remain
small and statistically weak.

Taken together, these findings support two interpretations. First, if water stress operates at the
water-system level and is shared among consumers served by the same utility, it could explain a

meaningful portion of the observed price response. Second, because water-service boundaries may

10Given data limitations—namely that the ACS provides electricity and water costs at the Census-tract level rather
than for individual properties—we define treatment and control groups at the tract level. Treated tracts are those
whose centroids lie within 5 km of a data center opening, while control tracts are those with centroids located 20-50
km from the same facility. Control variables include log population and log households, as well as tract demographics
and socioeconomic characteristics: the shares of males, those under age 21, Blacks, Whites, college-educated (or
above), employed, and those with household income below $25,000.
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be sufficiently granular to capture other localized factors correlated with facility siting, we interpret
the evidence cautiously. The attenuation is consistent with a water-stress channel, but it does not
allow us to rule out additional localized disamenities that may also contribute to the baseline price

declines.

5.4.3 Environmental Externality

Data center operations may depress nearby housing values in part through environmental disameni-
ties. Plausible channels include intermittent on-site combustion from backup generator testing,
emissions and drift associated with heat-rejection equipment, and meteorology-dependent propa-
gation of mechanical noise from cooling infrastructure. A shared implication of these mechanisms
is directional heterogeneity: for a given distance to the facility, expected exposure may be higher
for locations that are more frequently downwind (Anderson (2020); Briggs (1975); Deryugina et al.
(2019); Embleton (1996); International Organization for Standardization (2024); Ruiz et al. (2016)).
Motivated by this, we implement a wind-direction diagnostic: if wind-transported externalities are
a quantitatively important component of the capitalization effect, the post-opening price response
should be more negative for parcels that are more often downwind of the facility.

To probe this possibility, we construct a parcel-level wind-propensity measure equal to the
number of calendar months (0 — 12) during which a parcel lies within a 60-degree downwind sector
of its nearest data center, using long-run monthly-mean 10-meter wind vectors from the NARR.
We then estimate a triple-difference specification in which the standard treated-by-post term is
interacted with the wind propensity. The merit of this measure is that it provides a transparent,
pre-determined proxy for expected directional exposure that is plausibly orthogonal to short-run
housing market shocks. The limitation is equally clear: wind propensity does not measure any
specific externality. It can proxy for wind-transported environmental elements (e.g., dispersion
of airborne pollution, transmission of noise, drift and heat pathways, etc). At the same time, it
is not informative about channels that do not travel with the wind (e.g., visual intrusion, traffic
congestion). Accordingly, this test should be interpreted as reduced-form evidence on whether
environmental externalities are a quantitatively relevant mechanism behind the price response.

Across specifications, the baseline capitalization effect remains similar in magnitude and eco-

nomically meaningful: parcels within 5 km experience a statistically significant post-opening decline
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in sale prices of about 6.4 — 7.3% (Table 6). However, the wind-based estimand does not reveal a
clear directional pattern. Interpreted as the incremental post-opening effect per additional down-
wind month, the implied difference between parcels that are downwind in all twelve months versus
never downwind is a 2.4% reduction in transaction prices. But the estimate is too imprecise to rule
out either a negligible effect or a meaningfully larger one. As a placebo, we repeat the analysis using
the upwind propensity, defined analogously as the number of calendar months a parcel lies in the
opposite 60-degree sector. The corresponding estimate is approximately zero and also statistically
insignificant.

Taken together, these results indicate that while prices decline significantly in the treated area af-
ter data center operation begins, we do not detect robust additional capitalization differentials along
the prevailing downwind direction in this reduced-form exercise. This pattern can be explained by
several possibilities: the relevant disamenity bundle may not be strongly wind-transported at the
spatial and temporal resolution available here; directional effects may be attenuated by measure-
ment error in wind propensity; or environmental channels may operate through pathways that
are weakly directional. We, therefore, view the wind analysis as a suggestive diagnostic rather
than a decisive test, and leave sharper attribution of mechanisms to future work that links facility

operations to direct environmental measurements.

5.4.4 Alternative Mechanisms

Big Tech Effect. All hyperscale facilities in our estimation sample are owned and operated by big
technology firms, including Amazon, Apple, Microsoft, Google, and Meta. To assess whether the
estimated negative price effects reflect hyperscale characteristics (i.e., facility scale and intensity)
or big-tech operator identity, Table 7 interacts a big-tech indicator with the DiD term using the full
sample of data centers. Column (1) shows no detectable price response for non—big-tech-operated
facilities, while the negative effect is concentrated among big-tech-operated data centers.

Because all hyperscale sites in our estimation sample are operated by big tech, the specification
in Column (1) alone cannot disentangle big operator effects from scale effects. Column (2) there-
fore excludes hyperscale facilities and re-estimates the model on the remaining (non-hyperscale)
data centers. Column (3) further excludes facilities with high utility power capacity, a proxy for

larger-scale operations. The big tech interaction becomes statistically indistinguishable from zero,
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suggesting that operator identity per se is not the primary driver; instead, the negative price
impacts appear to be associated with facility scale and hence the associated local disamenities.

Visual disamenity. If the facility’s physical appearance were the dominant channel, housing
prices should adjust immediately upon construction completion, when the structure becomes ob-
servable and salient to market participants. Instead, the price decline occurs only two years after
completion. This timing pattern is difficult to reconcile with a purely aesthetic mechanism and is
more consistent with disamenities that arise during operations or with gradual updating of beliefs
as households learn about the facility’s local externalities.

Infrastructure quality. A second possibility is that hyperscale data center development
induces a reallocation of local infrastructure and public-service investment, with potential impli-
cations for broadly shared amenities (e.g., schools, hospitals, or other public services). We cannot
fully dismiss such reallocations. However, this mechanism is unlikely to be the primary driver of our
estimates. Infrastructure and service-provision channels typically operate at the county level and
are therefore expected to generate relatively diffuse price effects within a county, rather than steep
spatial attenuation. In contrast, our specification absorbs county-by-year shocks via county-by-year
fixed effects, and the estimated impacts display a pronounced within-county distance gradient, with
substantially larger declines for properties nearer to hyperscale data centers. This pattern suggests
that, to the extent they occur, countywide investment shifts do not account for the localized effects

we document.

5.5 Back-of-Envelope Calculation

We interpret the estimated housing-price response as the present value of households’ revealed
willingness to pay to avoid the localized externality bundle generated by hyperscale operations.
Using the preferred pooled estimate, house prices within 5 km decline by 6.8% following commis-
sioning. This magnitude is comparable to capitalization effects documented for other prominent
locally undesirable facilities. For instance, Davis (2011) documented a 3 — 7% reduction in housing
values within 2 miles of newly opened fossil-fuel power plants. Our findings suggest that hyperscale
data centers, despite not directly emitting air pollution like power plants, may generate other local
disamenities that the housing market capitalizes in a similar order of magnitude. Using an average

sale price of $350,000, this effect corresponds to an implied loss of approximately $23,800 per
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affected property. Scaling this per-property loss by an estimated 150,000 affected properties within
5 km of hyperscale facilities implies an aggregate capitalization loss of roughly $3.6 billion in our

sample.

6 Conclusion

This paper provides the first national-level causal evidence on the local housing market impacts
of hyperscale data centers. Using a stacked difference-in-differences design across a comprehensive
sample of data center operations, we find that proximity to hyperscale data centers induces eco-
nomically meaningful declines in residential property values. In our preferred specification, housing
prices within 5 km of a new hyperscale data centers decline by approximately 6.8%, with the effect
concentrated within the first few kilometers. Event-time estimates show no differential pre-trends
and a post-opening decline that strengthens over the subsequent years. This capitalization effect
is stable across specifications and is driven primarily by the largest facilities operated by major
technology firms.

We present complementary evidence to interpret the capitalization effect and assess potential
channels. Consistent with hyperscale facilities being capital-intensive and labor-light, we find little
evidence of sustained increases in local employment or wages following commissioning. In contrast,
we document increases in residential electricity costs in host areas after commissioning, consistent
with load-driven grid investments and/or procurement costs being partially passed through to
households. We also examine whether the estimated housing-price effect is sensitive to water-system
exposure by leveraging water-service boundary data. Absorbing water-service-boundary-by-time
variation attenuates the estimated capitalization effect, which is consistent with a component of
the effect operating through water-system-level conditions, although these specifications may also
remove variation correlated with siting and local amenities. Finally, a wind-direction diagnostic
yields negative but statistically imprecise differences between more- versus less-frequently downwind
parcels, suggesting that wind-transported channels are unlikely to account for a large share of the
baseline effect in this setting.

Our findings highlight a distinct feature of the modern digital economy—the spatial decoupling

of benefits and costs. Because the estimated impacts decay sharply with distance, the physical
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footprint of hyperscale generates salient, hyper-localized welfare losses, while fiscal benefits from
development deals accrue at the jurisdictional level that negotiates incentives. This wedge implies
that evaluating subsidies solely in terms of aggregate investment or tax-base arguments can be
misleading. Policies that explicitly account for incidence—including siting buffers from residential
areas, enforceable nuisance standards (e.g., noise), and transparent rules for allocating incremental
infrastructure costs—are likely to be more efficient and more equitable than uniform abatements
that ignore localized burdens.

A stylized welfare calculation illustrates the stakes. Under the standard hedonic interpretation,
the change in nearby house prices reflects households’ willingness to pay to avoid the bundle of lo-
calized costs associated with hyperscale commissioning, net of any local benefits valued by residents
(Bishop et al. (2020); Sheppard (1999)). Our estimates suggest that, absent significant fiscal trans-
fers that are utilized to directly compensate affected homeowners, the net local welfare impact on
nearby residents is negative. In particular, the drop in housing prices across the 150,000 affected
properties observed in our data implies an aggregate welfare loss of approximately $3.6 billion.
Consequently, local opposition to data center siting—often characterized as “NIMBYism”—may
reflect a rational capitalization of net welfare losses rather than a rejection of technology itself.

Lastly, our analysis opens new avenues for future research. First, our donut-shaped design
identifies localized effects net of any broader regional impacts shared by both treated and control
areas; it does not speak to general-equilibrium benefits of digital infrastructure that accrue outside
the near ring. Second, future research might fruitfully examine the precise elasticity of utility cost
pass-through. Third, the externality bundle plausibly varies with grid conditions, cooling technol-
ogy, climate, water constraints, and regulatory regimes. Linking openings to direct measures of
noise, water withdrawals, grid upgrades, and local emissions would sharpen attribution of mecha-
nisms and improve welfare accounting. As digital infrastructure expands, measuring and pricing its
localized costs will be central to designing development strategies that internalize incidence rather
than obscuring it. Our analysis establishes a clear baseline: under current technological and policy

conditions, the cloud infrastructure casts a tangible shadow on local housing markets.
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7 Figures and Tables

Figure 1: Data Center Development over Time and across the United States
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Notes: The figure plots the number of data centers by construction-completion year (top panel) and their geographic
distribution across the contiguous United States (bottom panel). Red bars in the top panel and red dots in the

bottom panel denote hyperscale data centers, while the gray counterparts represent all other facilities, including
retail, wholesale, and other types.
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Figure 2: Event Study of Log Housing Prices Around Hyperscale Data Center Openings
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Notes: This figure plots the estimated event-time coefficients for log sale price from the baseline difference-in-
differences model specified in Equation 2. The horizontal axis is years relative to the data center opening (yez}r
0 = opening year). The point at -1 (the omitted category) is normalized to zero. Dots represent point estimates 3¢

and the lines show 95% confidence intervals.
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Figure 3: Housing Price Impact by Distance from Hyperscale Data Center
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Notes: This figure shows estimated treatment effects on log housing price for different distance bands around the
data center as specified in Equation 2. Dots represent point estimates 3, and the lines show 95% confidence intervals.
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Figure 4: Staggered DiD Results of Log Housing Prices Around Hyperscale Data Center Openings

0.104
0.00 {fff~ — — - - ———#‘—*—{ —— = -———g - — ==
-0.10 1
-0.20
-0.30
-0.40 A
T T T T I I I T T T 1
-5 -4 -3 -2 -1 0 1 2 3 4 5
Treatment Year
® Borusyak et al. 4 de Chaisemartin and DHaultfoeuille
o Callaway-Sant'Anna o Sun-Abraham
¢ Stacked DD = OLS

Notes: This figure plots the estimated event-time coefficients for log sale price from various staggered difference-in-
differences models. The horizontal axis is years relative to the data center opening (year 0 = opening year). The
point at -1 (the omitted category) is normalized to zero. Dots represent point estimates /3’4 and the lines show 95%
confidence intervals.
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Figure 5: Labor Market Impact of Hyperscale Data Center
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Notes: This figure plots event-time coefficients for labor-market outcomes in natural logarithms. The horizontal

axis is years relative to the data center opening (year 0 = opening year). The point at -1 (the omitted category) is
normalized to zero. Dots represent point estimates B¢, and the lines show 95% confidence intervals.
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Figure 6: Labor Market Impact of Hyperscale Data Center—at County Level
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Notes: This figure plots event-time coefficients for labor-market outcomes, aggregated at the county level, in natural
logarithms. The horizontal axis is years relative to the data center opening (ye§r 0 = opening year). The point at -1
(the omitted category) is normalized to zero. Dots represent point estimates 8¢ and the lines show 95% confidence

intervals.
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Figure 7: Utillity Cost Impact of Hyperscale Data Center
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Notes: This figure plots the estimated event-time coefficients for electricity (top panel) and water (bottom panel)
utility cost from the stacked difference-in-differences model. The horizontal axis is years relative to the data center
opening (year 0 = opening year). The point at -1 (the omitted category) is normalized to zero. Dots represent point
estimates BZ and the lines show 95% confidence intervals.
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Table 1: Summary Statistics of Property Transaction Characteristics by Distance to Data Centers

Mean Values of Mean Values of
All Data Center Hyperscale Data Center
< 5km 20 - 50km < 5km 20 - 50km

Transaction Characteristics
Sale price ($°000) 446.944 380.410 349.070 364.601
Distance to data center (km) 3.437 37.774 3.687 38.163
Local Buyer 0.810 0.768 0.841 0.791
Corporate Buyer 0.097 0.075 0.064 0.077
Local Seller 0.810 0.754 0.839 0.767
Corporate Seller 0.381 0.396 0.451 0.358
Cash Purchase 0.201 0.198 0.114 0.181
Resale 0.876 0.822 0.737 0.839
Short Sale 0.022 0.020 0.020 0.018
Foreclosure Sale 0.066 0.060 0.054 0.053
Property Characteristics
Living Space (’000sqf) 2.025 2.419 2.056 2.049
No. Bathrooms 2.283 2.396 2.582 2.356
No. Bedrooms 3.165 3.205 3.234 3.154
No. Stories 1.474 1.411 1.476 1.407
No. Parking Spaces 2.614 2.516 2.133 2.016
Pool 0.073 0.082 0.061 0.059
Property Age (Years) 37.119 25.358 20.752 26.609
Neighborhood Demographics
Total population (’000) 9.763 11.002 11.093 11.015
Total households (’000) 3.684 3.972 3.893 4.066
Total housing units (’000) 4.076 4.454 4.184 4.556
Black Share 0.147 0.078 0.111 0.107
Non-Hispanic White Share 0.696 0.829 0.727 0.790
Median Household Income ($°000) 64.126 67.954 72.779 66.331
Unemployment Share 0.032 0.028 0.027 0.026
Observations 4,580,195 (11%) 35,726,876 (88%) 221,986 (6%) 3,479,573 (94%)

Notes: The unit of analysis is at the property transaction level. Transactions are grouped by distance to the nearest
data center site: properties within 5 km versus properties 20 — 50 km away.
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Table 2: Effects of Data Centers on House Prices — Stacked DiD

Log Housing Sale Price

(1) (2) (3) (4) (5) (6)

Panel A: Effects of All Data Centers
< 5km x Post 0.002 —0.002 —0.008** —0.011***  —0.020*** 0.001

(0.004) (0.004) (0.004) (0.004) (0.004) (0.005)
Adj. R? 0.503 0.620 0.550 0.649 0.652 0.675
Observations 40,307,071 40,306,824 40,307,071 40,306,824 40,297,430 37,338,946
Panel B: Effects of Hyperscale Data Centers
< 5km x Post —0.041** —0.060***  —0.030** —0.046***  —0.049***  —0.068***

(0.016) (0.017) (0.014) (0.014) (0.016) (0.021)
Adj. R? 0.478 0.607 0.521 0.640 0.662 0.643
Observations 3,701,659 3,701,481 3,701,559 3,701,481 3,699,640 3,661,868
Transaction Controls No No Yes Yes Yes Yes
Property Controls No Yes No Yes Yes Yes
DC x Distance FE Yes Yes Yes Yes Yes Yes
DC x Census Tract FE Yes Yes Yes Yes Yes Yes
DC x Time FE Yes Yes Yes Yes No No
DC x State x Time FE No No No No Yes No
DC x County x Time FE No No No No No Yes

Notes: Each column reports estimates from the stacked difference-in-differences specification around data center
openings, comparing properties within 5 km to properties in the control ring. Parentheses report standard errors.
***Significant at the 1 percent level.

**Significant at the 5 percent level.

*Significant at the 10 percent level.
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Table 3: Alternative Control and Treatment Groups

Log Housing Sale Price

(1)

(2)

(3) (4) (5)

(6)

Treated x Post —0.034***  —0.056*"* —0.053"** —0.089*** —0.047*** —0.016*
(0.012) (0.013) (0.016) (0.022) (0.017) (0.008)
Transaction Controls Yes Yes Yes Yes Yes Yes
Property Controls Yes Yes Yes Yes Yes Yes
DC x Census Tract FE Yes Yes Yes Yes Yes Yes
DC x County x Time FE Yes Yes Yes Yes
DC x Distance-to-DC FE Yes Yes Yes Yes Yes No
Distance-to-DC FE No No No No Yes No
Adj. R? 0.686 0.667 0.676 0.667 0.702 0.666
Observations 27,834,778 6,013,718 1,568,211 3,119,525 25,022,496 568,382
Treatment Group <5 km <5 km <5 km <5 km <5 km CTs with DC
Control Group 5-50 km  15-50 km 15-30 km  30-50km  Later-treated  Neigh. CTs
<5 km w/o DC

Notes: Each column reports a stacked difference-in-differences estimate of the effect of data center openings on log
housing sale prices under an alternative definition of treatment and/or the comparison group. The bottom panel lists
the treatment and control groups used in each specification. Parentheses report standard errors.
***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.
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Table 4: Alternative Definitions of Hyperscale Data Centers

Log Housing Sale Price

(1) (2) (3) (4) (5) (6)
<5km x Post —0.135"**  —0.070*** —0.016 —0.004 0.029* 0.001
(0.029) (0.022) (0.019) (0.014) (0.015) (0.005)
Transaction Controls Yes Yes Yes Yes Yes Yes
Property Controls Yes Yes Yes Yes Yes Yes
DC x Distance-to-DC FE Yes Yes Yes Yes Yes Yes
DC x Census Tract FE Yes Yes Yes Yes Yes Yes
DC x County x Time FE Yes Yes Yes Yes Yes Yes
Adj. R? 0.665 0.657 0.665 0.670 0.678 0.675
Observations 823,233 995,139 2,363,553 5,250,730 8,912,229 37,338,946
Total Utility Power (MW) >100 >80 >60 >40 >20 All

Notes: Each column reports a stacked difference-in-differences estimate of the effect of data center openings
on log housing sale prices, redefining the definition of “hyperscale” sites using alternative thresholds of total
utility power capacity. Parentheses report standard errors.

***Significant at the 1 percent level.

**Significant at the 5 percent level.

*Significant at the 10 percent level.
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Table 5: Water Stress and Housing Price Effects

Log Housing Sale Price
(1) (2) (3) (4)

< bkm x Post -0.014 -0.009 -0.042* -0.007
(0.020) (0.020) (0.016) (0.019)
Transaction Controls Yes Yes Yes Yes
Property Controls Yes Yes Yes Yes
DC x Distance FE Yes Yes Yes Yes
DC x Census Tract FE Yes Yes Yes Yes
DC x Service Boundary x Time FE Yes No Yes No
DC x County x Service Boundary No Yes No Yes
X Time FE
Adj. R? 0.703 0.705 0.672 0.686
Observations 2,241,747 2,231,815 3,551,924 3,491,918
Sample Transactions Matched to TEMM All

Notes: Each column reports estimates from the stacked difference-in-differences specification around data
center openings, comparing properties within 5 km to properties in the control ring. Parentheses report
standard errors.

***Significant at the 1 percent level.

**Significant at the 5 percent level.

*Significant at the 10 percent level.
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Table 6: Wind Direction and Housing Price Effects

Log Housing Sale Price
(1) (2)

< 5km x Post —0.064*** —0.073***

(0.020) (0.021)
< 5km x Post x Downwind Months —0.002

(0.003)
< 5km x Post x Upwind Months 0.000

(0.004)

Transaction Controls Yes Yes
Property Controls Yes Yes
DC x Distance FE Yes Yes
DC x Census Tract FE Yes Yes
DC x County x Time FE Yes Yes
Adj. R? 0.662 0.662
Observations 3,661,868 3,661,868
Sample Hyperscale DC  Hyperscale DC

Notes: “Downwind Months” and “Upwind Months” indicate the number of
calendar months the land parcels are in the downwind/upwind sector of the
nearby data center. Parentheses report standard errors.

***Significant at the 1 percent level.

**Significant at the 5 percent level.

*Significant at the 10 percent level.
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Table 7: Big Tech Ownership and Housing Price Effects

Log Housing Sale Price

(1) (2) (3)

< 5km x Post 0.003 0.003 0.003

(0.005) (0.005) (0.005)
< 5km x Post x Big Tech —0.063*** 0.104 0.110

(0.020) (0.071) (0.074)
Transaction Controls Yes Yes Yes
Property Controls Yes Yes Yes
DC x Distance FE Yes Yes Yes
DC x Census Tract FE Yes Yes Yes
DC x County x Time FE Yes Yes Yes
Adj. R? 0.675 0.678 0.678
Observations 37,338,946 33,616,358 31,434,552
Sample All w/o Hyperscale DC w/o Hyperscale DC or

DC with power < 80 MW

Notes: “Big Tech” indicates data centers operated by Amazon, Meta, Google, Apple, or Microsoft.
Parentheses report standard errors.
***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.
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A Appendix Figures and Tables

Figure A-1: Labor Market Impact of Hyperscale Data Center—at Commuting Zone Level
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Notes: This figure plots event-time coefficients for labor-market outcomes, aggregated at the commuting zone level,

in natural logarithms. The horizontal axis is years relative to the data center opening (ye@r 0 = opening year). The
point at -1 (the omitted category) is normalized to zero. Dots represent point estimates ¢ and the lines show 95%

confidence intervals.

42



Figure A-2: Labor Market Impact of Hyperscale Data Center—County-level QCEW
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Notes: This figure plots event-time coefficients for labor-market outcomes, obtained from QCEW, in natural loga-
rithms. The horizontal axis is years relative to the data center opening (yearAO = opening year). The point at -1
(the omitted category) is normalized to zero. Dots represent point estimates 8¢ and the lines show 95% confidence

intervals.
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Table A-1: Effects of Smaller-Scale Data Centers on House Prices

Log Housing Sale Price
(1) (2) (3) (4) (5)

Treatment x Post —0.017 0.007 0.002 —0.003 0.000
(0.015) (0.007) (0.008) (0.006) (0.005)

Transaction Controls Yes Yes Yes Yes Yes
Property Controls Yes Yes Yes Yes Yes
DC x Distance FE Yes Yes Yes Yes Yes
DC x Census Tract FE Yes Yes Yes Yes Yes
DC x County x Time FE Yes Yes Yes Yes Yes
Adj. R? 0.673 0.674 0.674 0.676 0.677
Observations 29,558,420 29,888,662 30,244,787 30,587,720 31,068,396
Treatment Group < 1km 1-2km 2-3km 3—4km 4-5km
Control Group 20-50km

Notes: The sample includes non-hyperscale data centers. Each column reports a stacked difference-
in-differences estimate using a treated ring indicated in the bottom panel and a common control
ring of 20 — 50 km. Parentheses report standard errors.

***Significant at the 1 percent level.

**Significant at the 5 percent level.

*Significant at the 10 percent level.
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