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Abstract

We study how individualized, proxy-based environmental information shapes beliefs, defensive
investments, and demand for precise diagnostics in the context of waterborne lead exposure.
Leveraging the mandated disclosure of water service line inventories under the 2021 Lead and
Copper Rule Revision, we conduct a pre-registered field experiment in five large U.S. cities that
discloses to treated households whether their building’s service line is recorded as lead. Disclo-
sure induces sharp belief updating. Among homes recorded as having lead service lines (LSLs),
perceived LSL probability rises by 21 percentage points relative to non-lead homes; meanwhile,
belief confidence increases by 0.2 points (on a 1-5 scale) across all treated respondents. Willing-
ness to pay for a pitcher-style lead filter falls by $8 on average among the non-lead respondents,
while the effect on the lead respondents is ambiguous. At the same time, willingness to pay for a
professional tap-water lead inspection increases by $9 among lead respondents and decreases by
$7 among the non-lead respondents. We develop a stylized model in which households’ optimal
decisions depend on both the mean and variance of perceived tap-water contamination, which
rationalizes these patterns. Back-of-the-envelope calculations suggest that disclosure of water
service line material type alone could generate approximately $17 million in social value across
our five study cities, even before accounting for any health gains from subsequent mitigation
practices.
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1 Introduction

Lead exposure through drinking water remains a first-order public health concern in the United

States. The principal pathway is corrosion from lead service lines (LSLs)—the pipes made of lead

and connecting buildings’ internal plumbing to municipal mains. Although Congress prohibited

their use in public water systems in 1986, roughly nine million LSLs still serve households nationwide

as of 2023 (USEPA, 2023). Lead is a potent neurotoxin with no safe level of exposure; there are no

effective secondary interventions (Bui et al., 2024). Upon entry, the human body falsely recognizes

lead as similarly charged (+2) metallic elements, like calcium or iron, causing disruptions in many

critical processes throughout the body (Garza et al., 2006). For example, lead can cross the blood-

brain barrier, interfering with neurotransmitter functions and spurring cognitive changes. For

children in particular, even low doses impair cognition and behavior with persistent consequences

for schooling performance, adult mental health, and socioemotional development (Aizer et al.,

2018; Aizer and Currie, 2019; Grönqvist et al., 2020; Hollingsworth et al., 2022; Reyes, 2015).

Lead exposure is also linked to diminished fertility (Grossman and Slusky, 2019), adverse birth

outcomes (Clay et al., 2014, 2025; Dave and Yang, 2022), deficits in cognitive skills (Ferrie et al.,

2012; Marcus, 2023), and overall mortality (Hollingsworth and Rudik, 2021; Menke et al., 2006).

Addressing exposure at the household margin is, therefore, central to the welfare calculus of U.S.

water infrastructure investments and environmental policymaking.

This paper provides the first experimental evidence on how individualized but proxy-based

environmental information shapes beliefs, defensive investments, and the demand for more accurate

exposure assessment, in the context of waterborne lead. We design and implement a pre-registered,

within-city randomized information intervention in five large U.S. cities—Detroit, Indianapolis,

Milwaukee, Minneapolis, and New York City (NYC).1 Respondents assigned to the treatment

group learn about the LSL status of their residential buildings according to the city inventories.

Before and after disclosure, we elicit (1) belief about having an LSL and the perceived number of

lead exceedances in 100 kitchen tap water samples, along with belief confidence, and (2) incentive-

compatible willingness to pay (WTP) for a pitcher-style lead filter and for a professional tap-water

lead inspection.

1This experiment is registered in the AEA RCT Registry as AEARCTR-0016286.
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Information disclosure is often viewed as a scalable, relatively low-cost tool to incentivize private

defensive behavior. U.S./ EPA mandates individualized disclosure of LSL status under Lead and

Copper Rule Revision (LCRR), which requires utilities to create and publicly publish parcel-level

service-line inventories (USEPA, 2020). Yet two core uncertainties limit our ability to predict its

effectiveness in this setting. First, an inventory disclosure is proxy-based: it informs households

about pipe material rather than directly measuring tap-water lead, which depends on corrosion

control, pipe condition, premise plumbing, and usage patterns. Second, even when information is

precise about the proxy, its behavioral impact depends on how households learn—how disclosure

shifts the perception of exposure (i.e., its mean and standard deviation) and how those beliefs map

into demand for defensive investments in stopgap mitigation or precise diagnostics to resolve the

remaining uncertainty.

Our design is guided by a stylized framework in which households maximize utility over a nu-

meraire and drinking water quality, where the latter is determined by the tap-water contamination

level and households’ mitigation effort. Disclosure updates the perceived distribution of contam-

ination rather than revealing a deterministic contamination level. When disclosure increases the

perceived mean of contamination (e.g., the household learns it has an LSL), demand for diagnostics

and defensive investment can rise. At the same time, in our setting, the inventory disclosure plau-

sibly reduced the perceived uncertainty of the contamination distribution, which might reduce the

demand. Thus, our model highlights that the impact of information is a priori ambiguous when

confronted with bad news (LSL), as it depends on how much the realized signal would change the

perceived mean and standard deviation. We take these predictions to the data using intent-to-treat

(ITT) specifications with city fixed effects, complemented by (1) a “post-on-pre” formulation and

(2) variants that replace true LSL status with a perception gap regressor to study updating rates.

As fielding of the survey is still ongoing, we expect to reach a final sample of approximately

2,000 respondents by March February 2026. With the current sample of 568 valid responses from

Detroit, Indianapolis, Milwaukee, and NYC, two main findings have begun to emerge. First, dis-

closure induces sharp belief updating. Among respondents in homes recorded as lead, the perceived

probability of having an LSL rises by about 21 percentage points relative to non-lead homes. Across

all treated respondents, belief confidence increases by roughly 0.22 on a 1−5 scale, suggesting that

disclosure narrows subjective uncertainty around the tap-water lead content level. Second, the
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results emphasize the effect of disclosure on demand for diagnostics. Filter WTP falls by $8 on

average for the non-lead respondents (∼ 13% of baseline), while the effect on the lead respondents

is ambiguous. Meanwhile, inspection WTP showed an average of $9 increase for the lead respon-

dents (∼ 13% of baseline) and an average of $7 decrease for the non-lead respondents (∼ 10%

of baseline). These magnitudes are economically meaningful and align closely with the model’s

comparative statics when the disclosed proxy shifts the perceived mean or variance of exposure.

In addition, the effects are robust across alternative specifications, including post-on-pre outcomes

and models that specifically estimate learning rate by investigating the treatment effect given prior

perception gap.

The policy implications are direct—we inform the optimal design of the costliest U.S. water in-

frastructure intervention in decades. Lead exposure via drinking water infrastructure has remained

an important piece of hidden information for the entire history of modern U.S./, contributing to

disparities in pollution exposure across socio-economic groups (Hausman and Stolper, 2021). Our

findings show that households substantially overestimate the probability that their own service line

is made of lead—the true LSL share in our sample is about 29%, whereas average priors are around

57%. The large chasm between beliefs and reality stands in contrast to many settings in which

households underestimate the severity of ambient pollutants, such as PM2.5 (Ahmad et al., 2022;

Chowdhury et al., 2025; Greenstone et al., 2021). This asymmetry makes water infrastructure a

particularly informative setting for studying how individualized, proxy-based information re-aligns

beliefs and defensive investments. With Congress’s allocation of $15 billion for LSL replacement

in the 2021 Infrastructure Investment and Jobs Act and the EPA’s mandate to disclose invento-

ries, understanding household behavioral responses is crucial for designing cost-effective bundles

of policies as well as the welfare analysis of said policies. We show that disclosure both generates

efficiency gains and reveals latent demand for diagnostics among lead households, netting a social

value of ∼ $17 million in our sample cities alone.

Our paper contributes to several strands of literature. First, we extend the environmental in-

formation disclosure literature by causally identifying how public, proxy-based information shifts

demand for more precise exposure assessment. Prior work establishes that environmental informa-

tion disclosure drives avoidance behaviors and reduces exposure. Air quality warnings (Barwick

et al., 2024; Gao et al., 2023; Neidell, 2010; Zivin and Neidell, 2009), water contamination alerts
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(Dupas et al., 2023; Madajewicz et al., 2007), environmental risk disclosures (Bakkensen and Ma,

2020; Ma et al., 2024), and health risk disclosures (Dupas, 2011) all induce welfare-improving defen-

sive behaviors and investment. Although in many cases the publicly available information provides

only a coarse proxy for an individual’s true environmental exposure, far less is known about whether

and how such proxy-based disclosures motivate households to seek more precise exposure assess-

ments. Our study fills this gap by directly showing that the LSL signal triggers higher WTP for

diagnostics.

Second, we build on the literature examining personalized information-provision. Greenstone

et al. (2021) and Metcalfe and Roth (2025) study how individualized indoor air quality readings

influence defensive behaviors and investment; Conell-Price and Mulder (2024) study belief updating

pertinent to property-level flood risks; and Allcott (2011), Allcott and Rogers (2014), and Jessoe

and Rapson (2014) study how household-level energy-use feedback influences residential energy

consumption. Relative to these costly, individualized interventions, we evaluate a policy already

deployed at scale (mandated city inventories) and show that it induces households to self-select

into precise diagnostics when the disclosed signal implies a high level of exposure. To implement

the personalized information provision, we conduct geospatial screening and matching, the details

of which will be explained in Section 2.

Third, we contribute revealed-preference evidence from a high-stakes environmental health set-

ting to the long-standing literature on the value of information (Stigler, 1961). Our approach is

closely related to randomized information experiments that study how people update expectations

when provided with objective signals under Bayesian learning (Armantier et al., 2016; Möbius

et al., 2022). A growing theoretical literature also emphasizes that information policy design re-

quires understanding both how signals update beliefs and how changes in belief map to behavioral

margins (Bergemann and Morris, 2019; Caplin and Dean, 2015). We operationalize this by jointly

measuring belief distributions, confidence, and incentive-compatible valuations for both mitigation

and diagnostics. Our findings overall illustrate an economically meaningful portfolio reallocation

that purely belief-based designs would miss.

Finally, our results connect to the extensive literature on health and human capital consequences

of lead exposure (e.g., Clay et al., 2014; Dave and Yang, 2022; Hollingsworth et al., 2022; Marcus,

2023), providing the behavioral counterpart needed to assess the benefits of disclosure and the
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welfare returns to complementary investments such as inspection and eventual pipe replacement.

Recent work has attempted to estimate large welfare gains from the Clean Water Act and Safe

Drinking Water Act (Keiser and Shapiro, 2019; Keiser et al., 2023). We provide the evidence on

behavioral responses needed to evaluate policies designed to combat waterborne lead exposure.

The remainder of the paper proceeds as follows. Section 2 describes the experimental design,

data, and implementation, including geospatial screening and the disclosure messages. Section 3

presents the stylized model and derives testable predictions. Section 4 introduces data and survey

participants. Section 5 reports the main experimental results on belief updating, confidence, and

WTP for mitigation and diagnostics, with robustness and heterogeneity. Section 6 concludes.

2 Experiment Design

We now describe the experimental design outlined in Section 1.

2.1 The LSL Information Intervention Experiment

Under EPA’s LCRR, water utilities must assemble and publish parcel-level inventories of service-

line materials by October 16, 2024. We leverage these newly released inventories to conduct an

information provision experiment embedded in an online survey, for which Figure 1 summarizes

the structure.2

We field our survey in five large U.S. cities—Detroit, Indianapolis, Milwaukee, Minneapolis,

and NYC—using Qualtrics software and implemented via Managed Research on CloudResearch,

a survey provider widely used in the social sciences (Bursztyn et al., 2023; Litman and Robinson,

2020). Cities were selected for policy relevance (i.e., large LSL stocks and active inventories) and

operational feasibility (Table 1). The target sample comprises N ≈ 2,000 validated completions,

with approximately equal allocation across treatment and control within each city. Stratified ran-

domization at the city level ensures balanced assignment and facilitates the inclusion of city fixed

effects in the analysis.

At the beginning of the survey, after screening out those who self-reported that they did not use

tap water as their primary water source, participants are assigned a water service line material type

2The complete survey instrument is available here here.
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through a two-step geospatial matching process. First, participants pinpoint their residence on an

embedded interactive map using Qualtrics-Map with Mapbox. Then, the latitude and longitude

coordinates from the pinned location are automatically cross-referenced with the geospatial water

service line inventory dataset of the corresponding city held on ArcGIS Online through an API.

If no match is found, the participant is screened out. If a match is found, they continue with the

survey.

Randomization of the information disclosure occurs only after a successful match and completion

of all pre-intervention questions. Within each city stratum, eligible respondents are assigned to a

control or treatment arm with equal probability. The intervention comprises a concise, standardized

disclosure. The control arm received a neutral description of the city inventory database and general

information about LSLs. The treatment arm received the same content, along with their building-

specific LSL status, explicitly attributed to the city database. Equalizing the generic text across

arms isolates the causal effect of individualized disclosure from generic salience of LSL issues. Figure

2 shows screenshots of the intervention messages. All key outcomes—beliefs about LSL presence,

beliefs about tap-water samples exceeding the federal limit for lead concentration, confidence, and

WTP for a filter and for an inspection—are elicited both before and after this information screen.

Beliefs include (1) the perceived probability (0 − 100) that the home has an LSL and (2)

the expected number of lead exceedances in 100 hypothetical tap samples. Lead exceedance

is defined as lead concentration surpassing the federal limit of 0.01mg/L. Respondents also re-

port a 1 − 5 confidence rating for the exceedance belief. We then elicit incentive-compatible

WTP for (1) a pitcher-style filter and (2) a professional kitchen tap-water inspection using the

Becker–DeGroot–Marschak (BDM) mechanism (Becker et al., 1964). We implement the BDM

mechanism by randomly selecting two respondents for a binding endowment (a $150 gift card),

then drawing a random posted price from $0 to $150. The winners either exchange part of the

endowment ($150 − stated WTP) for the chosen good when stated WTP ≥ price or receive the

entire $150 endowment when stated WTP < price. Prior to bidding, the instrument also includes a

comprehension check. Together, our implementation maintains incentive compatibility while keep-

ing implementation costs predictable. We also randomized the order of the two WTP questions

within each stratum to assess and mitigate potential order effects in stated valuations, in partic-

ular whether eliciting diagnostic demand first influences stated willingness to pay for immediate
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mitigation, or vice versa.

Two features of our experiment warrant additional emphasis. First, by conducting eligibility

screening through geospatial matching before randomization, we ensure that all participants in both

treatment and control arms are successfully linked to official government service line records. This

design avoids the problem in which treated participants cannot receive building-specific information

because the address lookup occurs after randomization and no match is found. This also allows

us to calculate the prior perception gap for all participants. Second, the disclosure text and user

interface are harmonized across cities to the extent possible; any city-specific elements are also

standardized in length and tone, with city fixed effects accounting for residual heterogeneity.

We considered the possibility that our information intervention might be less effective because

utilities are already notifying customers about service line materials under the LCRR. To investigate

this, we asked respondents if they had been notified and if they could recall the specific information.

As shown in Table A1, 29% stated they could recall a notification, and only 17% correctly recalled

whether their service line was lead or non-lead. More importantly, Figure A1 shows that the status

of notification and recall is not associated with the distribution of the pre-intervention perceived

likelihood of LSL presence.

2.2 Empirical Specifications

The empirical specifications follow the approach in the information intervention experiment liter-

ature (Haaland et al., 2023). Our estimands are ITT effects of individualized disclosure on belief

updating and demand for mitigation and diagnostics. All specifications follow the registered pre-

analysis plan. Let i index respondents and c(i) their city. Outcomes are measured immediately

before and after the intervention message:

Y ∈ {LSL prob (P ), Exceedances (S), Confidence (C), WTP(Filter), WTP(Inspection)}.

Let Li ∈ {0, 1} indicate whether the city inventory records the respondent’s service line as lead;

Di ∈ {0, 1} indicate assignment to building-specific disclosure; and γc(i) be city fixed effects. We
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first establish a baseline ITT specification to model the pre-post changes:

∆Yi ≡
(
Y post
i − Y pre

i

)
= β1Di + β2Li + β3(Di × Li) + γc(i) + εi. (1)

Here, β1 is the disclosure effect for non-lead homes while β3 captures the differential disclosure

effect for lead versus non-lead homes.

To improve precision and guard against regression-to-the-mean concerns, we also estimate a

post-on-pre form:

Y post
i = θ1Di + θ2Li + θ3(Di × Li) + ρ Y pre

i + γc(i) + ui. (2)

Under randomization, θ1 and θ3 identify the same causal parameters as in (1) while ρ absorbs

baseline variation and typically yields tighter confidence intervals.

To study belief updating directly, we also replace Li with the perception gap

Gi ≡ Li − P pre
i ∈ [−1, 1],

where P pre
i denotes the respondent’s pre-treatment belief about having an LSL, rescaled from the

elicited 0–100 probability to the [0, 1] interval. We then estimate

∆Yi = α1Di + α2Gi + α3(Di ×Gi) + γc(i) + ei, (3)

where α3 is interpretable as a reduced-form “updating rate” (i.e., how strongly disclosure moves

outcomes conditional on the size and direction of the prior–record discrepancy). This parametriza-

tion mirrors the expectations-formation literature, which models belief updating as a function of

prior forecast errors and recovers “updating rates” from the slope of the update on that error

(e.g., Armantier et al. (2016)). In our setting, a positive and sizable α3 is evidence that disclo-

sure moves beliefs in proportion to the prior misperception (rather than simply shifting levels via

generic salience or demand effects), and thus provides a simple test of whether updating behaves

in a broadly Bayesian manner. We also consider |Gi| to isolate responses to uncertainty magnitude

irrespective of sign.
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Section 5.4 specifies a set of heterogeneity analyses we expect to conduct when we finish fieldwork

with approximately 2,000 responses.

3 Model

This section develops a compact framework that links (1) how households learn from publicly

disclosed, proxy-based information about water lead exposure to (2) their WTP for two distinct

defensive margins: mitigation technology and individualized exposure assessment. The model is

designed to deliver testable predictions that our experimental design can evaluate directly .

Two features motivate our approach. First, the disclosure studied in this paper is individualized

but proxy-based, which is highly informative about the exposure but does not measure tap-water

lead directly. Such a signal naturally shifts the perception of exposure—its mean and distribution—

rather than revealing the exact state. Second, defensive investment spans two conceptually different

goods. A filter reduces exposure mechanically, conditional on the realized contamination, whereas

an inspection changes the perceived exposure distribution that guides subsequent mitigation choices.

These differences imply that disclosure can affect WTP for filters and inspections through distinct

channels.

We formalize these channels by modeling a household with quasi-linear preferences over a nu-

meraire good x and a damage index d that summarizes the health disutility of consumption of

contaminated water. Prior beliefs about the underlying tap-water contamination level w are sum-

marized by a distribution πw with mean µ and standard deviation σ. The information intervention

perturbs πw. For example, learning that the building has an LSL typically raises µ and may reduce

σ because the proxy signal narrows the support of plausible states. Conversely, learning that it

does not have an LSL lowers µ and may also reduce σ.

The central comparative statics we care about follow the logic of two forces:

1. Mean (risk level) effect. Holding uncertainty fixed, a higher perceived mean contamination

µ increases the payoff to mitigation and to targeted information acquisition—because the

value of clarifying whether extreme states obtain is larger when expected harm is greater.

2. Variance (uncertainty) effect. Holding the mean fixed, an increase in uncertainty σ
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strengthens both defensive margins. For mitigation, higher dispersion can raise WTP when

damages are convex in exposure. For inspection, greater uncertainty raises the value of

updating, because the incremental benefit of a precise reading is larger when the prior is

more diffuse.

Because disclosure typically moves both µ and σ, the net effect on diagnostic demand is theoretically

ambiguous ex ante: the variance-reduction channel lowers WTP, while the mean-shift channel can

raise it if perceived risk increases. This trade-off mirrors our empirical design, which separately

identifies effects for homes recorded as lead versus non-lead.

The remainder of the section proceeds in three steps. We first present a general choice environ-

ment and derive the optimal BDM bid for a filter and for an inspection—objects that coincide with

the experimentally elicited WTPs. We then impose quasi-linearity to obtain transparent expres-

sions that highlight how WTP maps into moments of πw. Finally, we specialize primitives to obtain

closed-form comparative statics that we can carry to the data. The proofs for all propositions and

conjectures are relegated to the Appendix.

3.1 General Setup

Let u(x, d) denote household utility, where x is the numeraire with price 1 and d is the contamination

of the water intake. We maintain the following assumption on preferences:

Assumption 1. u is concave in (x, d) and twice differentiable with ∂u/∂x > 0 and ∂u/∂d < 0.

Income is denoted by y. The (unknown) tap-water contamination is w, and prior beliefs about

w are πw with mean µ and standard deviation σ. The information intervention changes πw. We

study its implications for the WTP for (1) a filter and (2) a professional inspection, both elicited

via incentive-compatible BDM bids. For completeness, Appendix B.4 reports the benchmark in

which w is known.

A filter attenuates exposure mechanically: contamination falls from w to ew with e ∈ [0, 1)

known to the household after purchase. The household bids z; if the posted BDM price r ∼ U([0, r̄])

satisfies z ≥ r, it buys at price r. Expected utility, therefore, weighs the filtered and unfiltered
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states by the purchase probability z/r̄ as follows:

U(z, πw) =

∫ z

0

1

r̄
E [u(y − r, ew)] dr +

∫ r̄

z

1

r̄
E [u(y, w)] dr

=
1

r̄

∫ z

0
E [u(y − r, ew)] dr +

(
1− z

r̄

)
E [u(y, w)] .

(4)

Proposition 1. Under Assumption (1), the optimal bid z∗(πw) equalizes the expected utility from

just buying at price z to the expected utility from not buying, i.e.,

E [u(y − z∗(πw), ew)] = E [u(y, w)] . (5)

On the other hand, an inspection changes information rather than exposure. Upon purchasing

at price r, the household observes a realization of w before choosing mitigation effort a ∈ A (e.g.,

flushing, point-of-use actions), which reduces contamination according to d(w, a) at cost c(a). The

cost of mitigation effort is denoted by a continuous, increasing, and convex function c(a) > 0.

Without inspection, it optimally chooses a based on the prior πw. With inspection, it optimally

tailors a to the realized w. Define the expected utility without inspection as:

V0(πw) = max
a∈A

E
[
u
(
y − c(a), d(w, a)

)]
,

and the expected utility with inspection ex ante as

V1(r, πw) = E
[
max
a∈A

u
(
y − c(a)− r, d(w, a)

)]
.

Therefore, the expected utility of an inspection purchase is

Ũ(z, πw) =
1

r̄

∫ z

0
V1(r, πw) dr +

(
1− z

r̄

)
V0(πw). (6)

Proposition 2. Under Assumption (1), the optimal bid z̃∗(πw) equals the expected utility gain from

acting on the realized w relative to acting on πw, i.e.,

V1(z̃
∗(πw), πw) = V0(πw). (7)
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3.2 Comparative Statics

To obtain expressions that map cleanly to moments of πw, we impose:

Assumption 2. There exists a twice-differentiable v with u(x, d) = x + v(d), ∂v/∂d < 0, and

∂2v/∂d < 0.

3.2.1 WTP for Water Filter under Simplified Assumptions

Under quasi-linearity defined in Assumption (2), the optimal bid for filters collapses to the differ-

ence in expected damages between filtered and unfiltered states, as characterized by the following

equation:

z∗(πw) = E[v(ew)− v(w)]. (8)

Thus, the optimal bid is determined by the functional form of the damage function. We then

impose both a linear and a quadratic damage function to examine the relationship between the

optimal bid and the perception of exposure—the primary focus of our experiment.

Corollary 1. Under Assumption 2, if there exists β > 0 such that v(d) = −βd, then z∗(πw) =

β(1− e)µ and thus ∂z∗(πw)/∂µ > 0.

Corollary 2. Under Assumption 2, if there exists β > 0 such that v(d) = −βd2, then z∗(πw) =

β(1− e2)(µ2 + σ2), and thus ∂z∗(πw)/∂µ > 0 and ∂z∗(πw)/∂σ > 0.

Assuming a linear damage function, Corollary 1 shows that the optimal bid for the water filter

is positively determined by the expectation about the tap water pollution level alone. On the

other hand, Corollary 2 shows that the optimal bid is determined by both the expectation and the

variance of the tap water pollution level and increases in both of them, if the damage function is

quadratic.

3.2.2 WTP for Inspection under Simplified Assumptions

Under quasi-linearity defined in Assumption (2), the optimal bid for inspection equals the ex-ante

value of information: the difference between Ṽ1(πw), the expected maximized utility when actions

are chosen after observing w, and Ṽ0(πw), the expected maximized utility when actions are chosen

before observing w. It is characterized by Lemma 1:
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Lemma 1. Under Assumption 2, the optimal bid for the water inspection

z̃∗(πw) = Ṽ1(πw)− Ṽ0(πw), (9)

where

Ṽ0(πw) = max
a∈A

E [y − c(a) + v(d)] , Ṽ1(πw) = E
[
max
a∈A

y − c(a) + v(d)

]
.

To sharpen predictions, we adopt linear mitigation technology and assume a uniform prior over

[l, u] so that (µ, σ) fully summarizes beliefs, as characterized by Assumption 3 and Assumption 4.

Assumption 3. There exists c > 0 such that c(a) = ca; A = [0, 1] and d(w, a) = w(1− a)

Assumption 4. The prior belief about w follows uniform distribution: w ∼ U(l, u) with 0 ≤ l < u.

This leads to l = µ−
√
3σ, u = µ+

√
3σ, and µ ≥

√
3σ.

Thus, the optimal bid for inspection is determined by the function form of the damage function.

We similarly impose both a linear and a quadratic damage function v and focus on the implication.

Corollary 3. Under Assumption 2, 3, and 4, if there exists β > 0 such that v(d) = −βd, then we

have the following results:

1. If l ≥ c/β or u ≤ c/β, then z̃∗(πw) = 0

2. If l < c/β < u:

(a) when µ ≤ c/β,

∂z̃∗(πw)

∂µ
=

1

u− l
(βu− c) > 0;

(b) when µ > c/β,

∂z̃∗(πw)

∂µ
=

1

u− l
(βl − c) < 0;
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(c) For both cases,

∂z̃∗(πw)

∂σ
=

√
3

(u− l)2
(3βσ2 − βµ2 + cµ).

The necessary and sufficient condition for ∂z̃∗(πw)
∂σ > 0 is

σ2 >
1

3
µ(µ− 2c

β
). (10)

A sufficient condition for the inequality in Equation (10) is µ− 2c
β < 0. This sufficient

condition always holds when µ ≤ c/β.

Corollary 3 shows that if the prior belief is too high (l ≥ c/β) or too low (u < c/β), the optimal

bid for inspection is always 0. This is because when l ≥ c/β, the optimal mitigation action is

always 1, with or without the precise information about w. Similarly, when u ≤ c/β, the optimal

mitigation action is always 0, and knowing the precise level of w does not change the mitigation

action taken.

Corollary 4. Under assumption 2, 3, and 4, if there exists β > 0 such that v(d) = −βd2, then we

have the following result3:

1. When l2 > c/(2β),

∂z̃∗(πw)

∂µ
< 0, and

∂z̃∗(πw)

∂σ2
> 0;

2. When u2 < c/(2β),

z̃∗(πw) = 0.

Corollary 4 shows that if the prior belief is relatively high (l2 > c/(2β)), the optimal bid

for inspection decreases with mean and increases with variance; if the prior belief is very low

(u2 < c/(2β)), the optimal bid is always 0 because the optimal mitigation action is always 0.

3Refer to Appendix B.6 for the proof for Corollary 4.
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The value of the inspection is strictly positive only when the household’s prior places them in the

“region of actionability”—the interval of beliefs where the resolution of uncertainty could pivot the

optimal decision from inaction to action (or vice versa). The “non-lead” signal effectively pushes

households out of this region and into the “safe” corner solution, rendering further information

valueless. The “lead” signal, however, locates households squarely within the region of actionability:

they know the risk is non-zero, but arguably not high enough to warrant immediate, expensive pipe

replacement without confirmation. In this geometric interpretation, the inventory disclosure acts

as a complement to the inspection for high-risk types, enhancing the option value of downstream

diagnostics.

In summary, with linear damages, inspection WTP is zero whenever beliefs place the household

in a corner (i.e., always mitigate fully or never mitigate), and otherwise exhibits the mean—variance

trade-off. In particular, when µ ≤ c/β < u, z̃∗(πw) increases in both µ and σ. When beliefs are

sufficiently pessimistic or optimistic that optimal actions are unchanged by information, z̃∗(πw) = 0.

With quadratic damages, inspection WTP remains increasing in variance over a wide region of the

parameter space and can be decreasing in the mean when priors are already in the high-damage

range.

3.2.3 Predictions

The model delivers clear predictions we test experimentally: (1) WTP for filters depends on µ alone

with linear damages, and is increasing in both µ and σ with quadratic damages; and (2) WTP for

inspection depends on both µ and σ and is increasing in each. Furthermore, inspection is valuable

when information is consequential for the optimal action. This value tends to decrease with lower

uncertainty but can increase with higher perceived mean. A critical insight from Corollary 2 is that

under convex damages, the demand for mitigation is increasing in both the perceived mean (µ)

and the perceived variance (σ) of the hazard. This creates a theoretical ambiguity for the “lead”

treatment. While a “lead” disclosure constitutes “bad news” (µ ↑), the official inventory also serves

as a high-precision signal that resolves prior ambiguity about the home’s infrastructure (σ ↓).

Consequently, the variance suppression effect may dampen or even offset the mean risk effect in

the valuation of stopgap mitigation goods like filters. Conversely, for “non-lead” households, both

the mean and variance shift in the same direction (↓), unambiguously collapsing demand. Our
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empirical specifications are tailored to recover these comparative statics.

4 Data and Sample

This section describes the construction of our sampling frame, survey implementation, and the

characteristics of the analysis sample that underpins the empirical results. Throughout, we focus on

the four cities in which the experiment has already been fielded—Detroit, Indianapolis, Milwaukee,

and NYC—and briefly discuss the planned expansion to Minneapolis. We have currently collected

568 valid responses from September 3 to 23, 2025. The completion of the fielding will bring the

total target sample to approximately 2,000 respondents across five cities.

4.1 Service Line Records and Study Areas

The starting point for our design is the parcel-level service line inventory data that cities have made

public in response to the LCRR. For each of the cities, we obtained the most recent water service

line inventory available at the time of experiment implementation and processed the records into

GIS layers at the parcel level. Each record reports the material of the water service line connecting

the parcel to the water main, typically classified as lead, galvanized, non-lead, or unknown.

Table 1 summarizes these inventories. Across Detroit, Indianapolis, Milwaukee, Minneapolis,

and NYC, there are roughly 1.7 million recorded service lines, of which over 385, 000(22%) are

identified as lead and 928, 000(53%) as non-lead, with the remainder coded as unknown (including

galvanized). These records serve two roles in our project. First, they define the study area by re-

stricting attention to parcels with a known lead status. Second, conditional on successful geospatial

matching, they provide the individualized but proxy-based information that is disclosed to treated

respondents.

For the planned extension, we have already processed analogous parcel-level service line data

for Minneapolis, which contains a substantial share of lead lines as well. Adding Minneapolis to the

experimental sites allows us to test the generalizability of our findings in a fifth, demographically

and institutionally distinct city, thereby increasing the external validity of our experiment.
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4.2 Current Analysis Sample and Quality Controls

Fieldwork in the four current cities began on September 3, 2025. By September 23, we had obtained

781 complete surveys (394 assigned to control and 387 to treatment), which were trimmed via

pre-registered quality screens as shown in Table A2. We first excluded responses from pilot waves,

leaving 662 completes. We then dropped respondents whose completion time was below ten minutes

and those who failed at least one attention check question. The final analysis sample contains 568

respondents (294 control and 274 treatment). The p-values of the Pearson’s Chi-square test between

treatment assignment and LSL status shown in Table A2 suggest orthogonality between the two,

indicating that response filtering does not compromise the randomized nature of the treatment.

Within the cleaned sample, Table 2 reports the cross-tabulation of city, material, and treatment

status. In each city, we observe both lead and non-lead homes in both experimental arms, with

roughly two-thirds of respondents residing in non-lead buildings and one-third in lead buildings,

reflecting the underlying inventories. This joint variation in treatment and true LSL status is

central to our empirical strategy.

The sample is well balanced across treatment arms. Table 3 shows that treated and control

respondents look similar across a whole host of household characteristics, with all p-values from

statistical tests sitting comfortably above conventional significance thresholds. The balance we

observe across key household characteristics confirms that our randomization was robust and suc-

cessful, reinforcing the internal validity of our empirical analysis. Moreover, when we compare

our sample to official, population-weighted benchmarks across our study cities, the distributions of

key demographics are broadly comparable, with small deviations across average household age and

income.

Table 4 compares respondent demographics by recorded service line material to population-

weighted benchmarks across our study cities. Households in the lead sample are slightly younger

and have lower incomes than both the non-lead sample and the underlying city populations, and

they are substantially less likely to be White (29% vs. 43% in the non-lead group and 36% in

the census benchmark). These patterns mirror well-documented environmental justice gradients

in lead exposure and related health risks, underscoring why LSL replacement is also an urgent

equity concern (Aizer et al., 2018; Hollingsworth and Rudik, 2021). For comparisons in other
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characteristics by treatment assignment, please refer to Table A3, which includes water usage,

perception of health damage from lead, trust in the city’s database (and the information received

in the treated group), and effectiveness of the Brita pitcher filter. Note that among these variables,

only those on water usage are collected before the intervention, while the others are collected at

the end of the survey.

We plan to resume the fielding of the survey during February and March 2026 and recruit

approximately 300 additional respondents in Minneapolis under the same protocol. Combined with

the existing four-city sample, this will yield a five-city experiment with about 2,000 respondents,

improving statistical power and allowing us to probe heterogeneity in treatment effects across

distinct regulatory and demographic environments.

5 Results

5.1 Pre-intervention Baseline Analytics

We begin by documenting the pre-intervention characteristics of the experimental sample and

verifying that randomization produced comparable treatment and control groups. Tables 5 and 6

report pre-treatment beliefs and WTPs overall and by material. Prior to information disclosure,

treatment and control groups look similar: respondents assign on average a probability of ∼ 57%

that their home has an LSL, expect ∼ 25 tap-water samples to exceed the lead standard, and

express mean WTPs for a pitcher filter and for an inspection in the $65 − $75 range. Differences

between arms are small and statistically insignificant within both the lead and non-lead strata. This

supports our use of post-minus-pre changes as the main outcome in the empirical specifications.

At the same time, the levels of these priors are striking: in the underlying inventories, only

about 29% of homes in our analysis sample are actually recorded as having LSLs, making average

subjective priors almost twice as high as the objective LSL share. The average prior on lead

exceedance in tap water is also over twice the EPA safety limit (10 samples). This large ex ante gap

between perceived and actual LSL prevalence underscores both the salience of waterborne lead in

households’ minds and the potential value of inventory-based disclosure in correcting systematically

pessimistic priors about service-line risk. It also contrasts with recent evidence from highly polluted

ambient-air settings, where households often underestimate actual pollution levels or the returns
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to mitigation (Ahmad et al. (2022); Chowdhury et al. (2025); Greenstone et al. (2021)).

5.2 Main Results

We now turn to the effects of disclosing building-specific LSL status on beliefs and WTPs. Figures

3-5 illustrate the changes in our outcome variables caused by the intervention, broken out by

experimental arm and material type; Table 7 presents ITT estimates from Equation (1). We

organize the results in three parts: belief updating (Columns 1− 3), mitigation demand (Column

4), and diagnostic demand (Column 5).

Beliefs about LSL presence respond strongly and in the direction implied by the disclosed infor-

mation. Figure 3a plots the change in the percentage belief reported before and after the information

intervention; that is, P post
i − P pre

i . The figure indicates that information disclosure increases the

perceived likelihood among lead respondents and decreases it among non-lead respondents. Based

on Column (1) of Table 7, among respondents whose addresses are recorded as having lead service

lines, treatment increases the perceived probability of having an LSL by about 21 percentage points

relative to non-lead respondents. This effect corresponds to roughly 0.8 pre-treatment standard

deviation of LSL beliefs. Panels (a) and (b) of Figure 6 illustrate these effects by reporting the

estimated treatment and interaction coefficients along with their 95% confidence intervals.

In addition, disclosure shifts beliefs about tap-water contamination. Figure 4a reveals a diver-

gence in the treated group: respondents with LSLs increase their estimates of lead exceedances,

while those without LSLs lower their estimates. Meanwhile, the control group shows little change.

Column (2) of Table 7 shows that, for lead addresses, the information intervention raises the per-

ceived number of lead exceedances (out of 100 hypothetical samples) by about 6.7 samples relative

to non-lead addresses; this effect is economically meaningful, though estimated with substantial

uncertainty in the current sample. Figure 6 visualize the corresponding treatment and interaction

estimates with 95% confidence intervals in Panels (c) and (d). Column (4) of Table 11 shows a

more precisely estimated effect under the learning-rate specification in Equation (3), of similar

magnitude (8.84).

Information disclosure increases belief confidence. In Figure 3b, we treat P pre
i and P post

i as the

probability parameters of Bernoulli distributions to calculate the pre- and post-standard deviations.

For both the lead respondents and the non-lead respondents, we observe a larger decrease in the
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standard deviation among treated respondents relative to those in the control arm. Specifically, the

treated non-lead group appears to exhibit the most significant reduction in uncertainty. Figure 4b

plots the change in confidence regarding the number of lead exceedances in 100 kitchen tap water

samples. The figure confirms an increase in confidence among the treated respondents compared

with the control group.

Column (3) of Table 7 shows that, pooling across lead and non-lead homes, assignment to

treatment increases respondents’ confidence in their beliefs by about 0.22 point on a 1–5 scale,

approximately 0.23 standard deviation of the baseline confidence distribution. This result is illus-

trated in Figure 7, which shows the point estimate and the 95% confidence interval for Treatment.

This pattern is consistent with disclosure narrowing the perceived distribution of possible states,

even when the mean risk moves up or down. The joint movement of beliefs and confidence also

resonates with the broader literature on self-confidence and information acquisition, which shows

that individuals adjust confidence in response to signals in ways that shape subsequent choices and

welfare (Möbius et al., 2022). While our context is simpler and does not model strategic confidence

management, the pattern that confidence responds systematically to inventory signals—alongside

beliefs—underscores that disclosure changes not only perceived risk levels but also how certain

households feel about those beliefs.

Turning to defensive behavior, we find clear evidence that providing proxy-based information

changes the demand for diagnostics, while the effect on mitigation is not precisely estimated for

lead respondents. Figure 5a plots the distribution of the change in WTP for the Brita pitcher-style

filter; it suggests a treatment-induced decrease among the non-lead group but statistically imprecise

effect for the lead group. In contrast, Figure 5b reveals a sharp treatment-induced divergence in

demand for diagnostics: WTP increases for the treated lead group and decreases for the treated

non-lead group, while the control group remains relatively stable.

Column (4) of Table 7 confirms that, among non-lead respondents, the treatment reduces WTP

for a pitcher-style filter by about $8 on average (roughly 0.18 baseline standard deviation of the

non-lead respondents). For lead respondents, the estimate of the treatment effect (i.e., the sum of

the coefficients on Treatment and Lead × Treatment) is less precisely estimated (point estimate

= −$2.30, 95% CI [−$10.19, $5.59]). While currently inconclusive, we anticipate greater precision

with the full sample. Panels (a) and (b) of Figure 8 provide a compact visual summary of these
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estimates.

Conversely, Column (5) of Table 7 shows a significant positive treatment–lead interaction:

among lead-address households, the information intervention increases WTP for a professional

kitchen-tap inspection by about $16 relative to non-lead households, corresponding to roughly 0.36

of the baseline standard deviation. Specifically, the LSL group increased their WTP by $8.91,

whereas the non-LSL group decreased theirs by $7.26. Figure 8 visualizes the corresponding treat-

ment and interaction estimates for inspection WTP in Panels (c) and (d).

We interpret these results through our model, in which households optimize expenditures based

on the perceived distribution of exposure. For LSL households, disclosure raises the mean perceived

risk while reducing uncertainty. Our results suggest that the effect of higher mean risk outweighs

the effect of reduced uncertainty, driving households to increase their demand for individualized

exposure assessments.

Table 9 assesses whether randomly switching the order in which the two WTP questions are

asked affects respondents’ stated values. Column (1) shows that when respondents are first asked

how much they are willing to give up their bonus to obtain a professional tap water lead inspec-

tion—before being asked about a lead-filtering pitcher—their stated WTP for the filter is about $8

lower on average, and this difference is statistically significant. In contrast, column (2) shows that

the question order does not affect WTP for professional inspection.

This pattern highlights the importance of our research in studying demand for more accurate

exposure assessment when individuals are provided with proxy information. Specifically, it suggests

that presenting the inspection option first may crowd out respondents’ valuation of immediate

mitigation options. Columns (3)–(6) further show that switching the question order does not affect

changes in WTP or posterior WTP once prior WTP is controlled for, indicating that order effects

do not meaningfully affect our main results.

5.3 Robustness

We assess the robustness of these findings across several pre-specified dimensions in our analysis

plan. First, we augment equation (1) with baseline covariates capturing household income and the

presence of children aged 10 or younger. These variables are potentially important both for the

perceived stakes of lead exposure and for access to mitigation technologies. The coefficients on
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the treatment–lead interaction remain practically unchanged when these controls are included (see

Table 8).

Second, we estimate a “post-on-pre” version of the main specification, as specified in Equa-

tion (2). The resulting estimates, summarized in Table 10, confirm that our conclusions are not an

artifact of using change scores; the implied treatment–lead effects on posterior beliefs and WTPs

are of similar order of magnitude to the baseline ITT estimates.

Third, we exploit the “perception gap” structure of our design and re-estimate the main specifi-

cation by replacing the lead-status indicator with the pre-treatment perception gap, as specified in

Equation (3). This alternative parametrization follows the learning literature and allows us to relate

belief updating directly to the size and sign of prior errors. Table 11 reports coefficient estimates

of 2.20 and 8.84 for perception gap × Treatment in Columns (2) and (4). This means that the

perception-gap specifications yield patterns that closely resemble Bayesian updating: larger prior

errors are associated with proportionally larger revisions in the direction of the disclosed inventory

record. This structure echoes Armantier et al. (2016), who show that inflation expectations update

in proportion to prior forecast errors when households receive price information. In our context,

the fact that the magnitude of belief changes scales with the perception gap, rather than being a

constant shift across respondents, helps rule out interpretations based purely on generic salience or

experimenter demand. Instead, it suggests that respondents treat LSL inventory information as a

noisy signal and incorporate it in a reasonably disciplined way.

5.4 Heterogeneity

This section outlines the heterogeneity analyses we plan to carry out once we complete the fielding.

Our experimental design provides several natural dimensions of heterogeneity. First, because the

sample spans four distinct cities (with Minneapolis to be added), we can ask whether the impact

of disclosure differs across water systems with different LSL prevalence, regulatory histories, and

communication practices. In the completed paper, we will present estimates of equation (1) allowing

the treatment–lead interaction to vary by city and will relate these differences to features of local

implementation.

Second, we will explore heterogeneity by baseline vulnerability and information environment.

This includes interactions with household income, the presence of young children, education,
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race/ethnicity, baseline beliefs, and confidence. These analyses will shed light on whether more

disadvantaged or more uncertain households react more strongly to individualized proxy informa-

tion, and whether disclosure narrows or widens existing gaps in defensive investments.

Third, we will examine whether the shift from filters to inspections among lead households is

concentrated among those with significant ex ante perception gaps, as the model suggests. Estimat-

ing equation (1) with interactions between treatment assignment and terciles of the perception-gap

distribution will allow us to test whether households who were initially most misinformed reallocate

defensive resources more aggressively when confronted with building-specific LSL records.

The combination of these heterogeneity analyses will enable us to speak not only to the average

effects of LSL disclosure but also to its distributional consequences and the potential for targeted

information or subsidies to enhance both efficiency and equity in future LSL replacement programs.

5.5 Welfare Calculations and Policy Implications

Our results bear directly on LSL replacement policy design. The 2021 Infrastructure Investment

and Jobs Act allocates $15 billion for LSL replacement, while LCRR mandates inventory disclosure

but remains largely silent on complementary policies. We discuss three implications.

First, inventory disclosure generates welfare gains through correcting the WTP of mis-priced

goods. Prior to the intervention, non-lead households held diffuse, unrealistically pessimistic priors

that induced a positive valuation for a mitigation good they did not technically need. The informa-

tion shock compresses this deadweight loss by reducing wasteful filter expenditure by about $8 per

non-lead household and reducing inspection WTP by about $7 per non-lead household. Applied

to roughly 928, 000 non-lead service lines in our five-city study area, these two channels together

correspond to avoided inefficient defensive expenditures on the order of $13.9 million. On the di-

agnostic margin, lead households reveal an average post-intervention increase of about $9 in WTP

for a professional inspection, implying that subsidized testing could unlock roughly $3.5 million in

latent demand across the approximately 385, 000 lead parcels. Taken together, these three channels

alone suggest a minimum static social value of ∼ $17 million in our sample cities alone, even before

accounting for health improvements, permanent pipe replacement, or general equilibrium effects.

Second, liquidity constraints likely bind for vulnerable households. Table 4 shows lead house-

holds are lower-income and disproportionately non-White, consistent with environmental justice
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literature (Banzhaf et al., 2019). Despite these tighter budgets, lead households exhibit high in-

spection WTP (∼ $76) when provided experimental endowments of $150. This suggests the barrier

to seek the service of exposure investigation might not be low evaluation of the service but the

budget constraint. Market-based solutions that rely on households purchasing their own tests post-

disclosure may therefore be regressive. An optimal policy should couple inventory disclosure with

subsidized verification for identified lead households.

Third, disclosure should be paired with salient communication. Our intervention provides crisp,

individualized information attributed to official city records. Real-world LCRR implementation

varies widely in salience: some utilities mail postcards; others bury inventories on an online search

portal. Our results suggest disclosure matters but only if households actually receive and attend

to the information.

6 Conclusion

This paper examines how proxy-based, individualized environmental information shapes beliefs

and defensive investments in the context of waterborne lead exposure. Leveraging parcel-level

service line inventories that U.S. cities assembled under EPA’s Lead and Copper Rule Revision,

we design and implement a pre-registered, within-city randomized experiment in five large urban

systems. The intervention discloses respondents’ building-specific LSL status and, before and after

disclosure, elicits beliefs about having an LSL and tap-water exceedances, confidence, and incentive-

compatible WTP for a pitcher filter and for a professional kitchen-tap inspection. A stylized model

links disclosure-induced shifts in the perceived mean and variance of contamination to demand for

mitigation and individualized exposure assessment.

Three main empirical findings emerge. First, individualized disclosure induces sharp belief

updating: among homes recorded as having an LSL, the perceived probability of having an LSL

rises substantially relative to non-lead homes, and belief confidence increases across the treated

sample. These patterns are consistent with Bayesian learning from a high-signal proxy, in line with

evidence on environmental information and belief revision in other settings (Neidell, 2010; Barwick

et al., 2024; Conell-Price and Mulder, 2024). Second, disclosure reallocates defensive effort away

from generic mitigation and toward diagnostics. On average, filter WTP falls, while inspection
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WTP rises for lead-address households relative to non-lead households, consistent with the idea

that households facing higher perceived mean risk and reduced uncertainty place greater value on

precise information. Third, these patterns are robust to alternative specifications, including post-

on-pre formulations and updating-based parametrizations using the perception gap between priors

and inventory records. Together, we conclude that the LSL disclosure generates a minimum social

value of ∼ $17 million in our sample cities.

The model developed in Section 3 helps organize these findings. With quasi-linear preferences,

filter WTP is a function of the perceived distribution of contamination: under linear damages,

it depends on the perceived mean alone and rises with that mean; under quadratic damages, it

increases in both the mean and the variance of perceived contamination. Inspection WTP equals

the ex-ante value of information and is positive only when observing the true state would change

optimal mitigation; in regions where beliefs place the household at a corner (always mitigate fully or

never mitigate), the model predicts zero demand for inspection. In intermediate regions, inspection

WTP reflects a trade-off between a mean effect (higher perceived risk raises the value of updating)

and a variance effect (a more diffuse prior raises the value of updating). The empirical pattern

that inspection WTP increases most for lead households—for whom disclosure plausibly raises the

perceived mean while tightening beliefs—is consistent with the model’s comparative statics. Taken

together with the perception-gap regressions, these patterns place our findings squarely within

a broader body of work documenting disciplined belief updating in response to information (e.g.

Armantier et al., 2016). They also highlight that confidence is an elastic object influenced by signals

in ways reminiscent of experimental evidence on self-confidence management (Möbius et al., 2022).

At the same time, the fact that average filter WTP falls, especially among non-lead households,

suggests that many participants were either overestimating risk ex ante or viewing the pitcher as a

partial substitute for information, features that lie outside the simplest versions of the model but

are natural once one allows for budget constraints, pre-existing mitigation, or complementarities

between testing and subsequent investments.

Normatively, our results bear directly on current policy debates. The United States is poised

to spend tens of billions of dollars over the coming decade to identify and replace LSLs, combining

federal infrastructure funding with state and local programs (USEPA, 2023). Knowing where lead

pipes are is a necessary input into any efficient replacement strategy, but it is not sufficient: the
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welfare returns to these investments depend on whether households understand their risk and

adjust behavior accordingly. Our experiment shows that inventory-based disclosure can realign

beliefs with the underlying infrastructure and shift demand toward individualized diagnostics when

risk is elevated, while discouraging low-return mitigation when risk is low. These features are

desirable from a welfare perspective if households internalize the health benefits of accurate exposure

assessment and subsequent action, and they complement the large body of evidence documenting

the long-run harms of lead exposure for health and human capital (e.g., Aizer et al., 2018; Clay

et al., 2014; Dave and Yang, 2022; Hollingsworth et al., 2022; Marcus, 2023). From a policy design

standpoint, our findings suggest that pairing inventory disclosure with subsidized testing, targeted

outreach in lead-dense neighborhoods, and ultimately subsidized replacement could yield more

cost-effective and equitable reductions in exposure than either information or subsidies alone.

In terms of external validity, our findings likely generalize to other settings where regulators

disclose infrastructure risk factors rather than direct pollution measurements (e.g., flood zone des-

ignations and proximity to Superfund sites). In each case, households receive a proxy signal and

must decide whether to invest in diagnostics or stopgap mitigation. Our finding that proxy dis-

closure triggers demand for verification suggests information policy design should anticipate this

complementarity. Pairing disclosure with subsidized diagnostics may be more cost-effective than

disclosure alone.

Finally, our results demonstrate a critical environmental justice dimension of the LCRR. We

document that households with lead service lines are systematically lower-income and less likely to

be White (see Table 4). Despite these tighter budget constraints, these households exhibited a high

WTP for professional inspections (∼$16) when provided with the inventory data and the liquidity

of the experimental endowment. This suggests that the primary barrier to exposure assessment in

vulnerable communities may not be a lack of valuation or awareness, but a liquidity constraint.

Market-based solutions that rely on households purchasing their own tests after disclosure may

therefore be regressive. Optimal policy design should likely couple inventory disclosure with sub-

sidized verification for identified “lead” households to close the gap between the desire for safety

and the ability to pay.

Several open questions remain and point to a broader research agenda on waterborne lead and

information. It is important to note that our $17 million estimate is a lower bound. It excludes
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(1) health benefits from improved mitigation and eventual pipe replacement, (2) option value of

information for future decisions, (3) spillovers to untreated neighbors, and (4) general equilibrium

effects on property values. Back-of-the-envelope calculations using epidemiological dose-response

functions (e.g., Hollingsworth and Rudik, 2021; Keiser et al., 2023) suggest the health benefits of

targeted replacement could dwarf our measured WTP changes. However, our experiment focuses on

short-run responses to a one-time disclosure. Linking public disclosure and experimentally elicited

WTPs to administrative data on actual tap-water testing, filter adoption, or enrollment in LSL

replacement programs would tighten the connection between stated and revealed preferences and

sharpen the welfare calculus. Understanding how beliefs, confidence, and defensive investments

evolve as households receive repeated inventory notifications, local outreach, and program offers is

also an important topic for future work. Our results provide one step toward filling this gap and

illustrate how experimental variation in disclosure guided by theory can be used to evaluate and

improve information policies in drinking-water regulation.
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7 Figures and Tables

Figures

randomized within city randomized within city

Screening: (1) Use tap water as primary source.
(2)Match address to service line record

Baseline: Demographics, housing, water use

Pre-intervention: Beliefs & WTPs

Control: General info Treated: General info + Building-specific lead status

Post-intervention: Repeat questions on beliefs & WTPs

Additional questions: Trust for info, perceived filter effectiveness, open-
ended why questions, perceived health damage, future water use plan

Figure 1: Survey Flow of the Experiment
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Figure 2: Screenshots of Intervention Messages
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(a) (b)

Figure 3: Change in the perceived likelihood of LSL presence among each group. For each box-and-whisker plot,
the bottom of the box, the thick line, and the top of the box denotes the 25th, the 50th, and 75th percentile of the
distribution, respectively. The red marker indicates the mean value. Panel (a) shows the result for the change in
the percentage point belief reported before and after the information intervention, P post

i − P pre
i . In Panel (b), we

treat P pre
i and P post

i as the probability of Bernoulli distribution and calculate the pre- and post-standard deviation
respectively and then calculate the change.
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(a) (b)

Figure 4: Belief change in lead sample exceedances among each group. For each box-and-whisker plot, the bottom
of the box, the thick line, and the top of the box denote the 25th, 50th, and 75th percentiles of the distribution,
respectively. The red marker indicates the mean value. Panel (a) shows the change of perceived number of water
samples that exceed the federal limit of 0.01mg/L in 100 kitchen water samples. Panel (b) shows the change in the
confidence of that belief measured on a 1-5 scale.
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(a) (b)

Figure 5: WTP changes among each group. For each box-and-whisker plot, the bottom of the box, the thick line,
and the top of the box denote the 25th, the 50th, and the 75th percentile of the distribution, respectively. The red
marker indicates the mean value. Panel (a) shows the change in the WTP for the pitcher-style filter. Panel (b) shows
the change in the WTP for the professional tap water lead inspection.
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Figure 6: Coefficient point estimates and 95% confidence interval of regressions in Table 7 (estimation results from
Equation 1) and Table 10 (estimation results from Equation 2) for outcome variables related to perceived likelihood
of LSL presence and perceived number of tap-water samples with lead concentration exceeding the federal limit of
0.1 mg/L. The navy points and whiskers correspond to results in Table 7, while the maroon ones correspond to the
results in Table 10. Panels (a) and (b) show results for perceived LSL likelihood, while Panels (c) and (d) show
results for perceived tap water lead exceedances. Panel (a) and (c) show estimations for Treatment (i.e., whether the
respondent learn about the building-specific service line material) while Panel (b) and (c) show estimations for Lead
X Treatment.
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Figure 7: Coefficient point estimates and 95% confidence interval of regressions in Table 7 and Table 10 for confidence
about one’s perceived water lead exposure. The navy points and whiskers correspond to the result in Column (3) of
Table 7, while the maroon ones correspond to the result in Column (3) of Tabel 10.
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Figure 8: Coefficient point estimates and 95% confidence interval of regressions in Table 7 (estimation results from
Equation 1) and Table 10 (estimation results from Equation 2) for outcome variables related WTPs for a lead-filter
pitcher and professions tap water lead inspection, respectively. The navy points and whiskers correspond to results
in Table 7, while the maroon ones correspond to the results in Table 10. Panel (a) and (b) show results for filter
WTP, while Panels (c) and (d) show results for inspection WTP. Panel (a) and (c) show estimations for Treatment
(i.e., whether the respondent learn about the building-specific service line material) while Panel (b) and (c) show
estimations for Lead X Treatment.
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Tables

Table 1: Service line records by city and material

City Lead Non-lead Unknown Total

Detroit
145 507

39%

85 314
23%

142 409
38%

373 230

Indianapolis
45 875

13%

171 485
50%

129 647
37%

347 007

Milwaukee
70 250

44%

75 756
47%

14 264
9%

160 270

Minneapolis
39 674

33%

79 035
66%

1796
1%

120 505

NYC
128 918

15%

516 840
60%

210 927
25%

856 685

Study Area
385 224

22%

928 430
53%

399 043
25%

1 712 679

Table 2: Respondents by city, material, and treatment assignment

City Material Treated Control Total

Detroit
Lead

43
31.6%

45
33.1%

88
64.7%

Non-lead
22

16.2%

26
19.1%

48
35.3%

Indianapolis
Lead

12
16.0%

11
14.7%

23
30.7%

Non-lead
24

32.0%

28
37.3%

52
69.3%

Milwaukee
Lead

10
17.2%

11
19.0%

21
36.2%

Non-lead
18

31.0%

19
32.8%

37
63.8%

NYC
Lead

13
4.3%

18
6.0%

31
10.4%

Non-lead
132
44.1%

136
45.5%

268
89.6%
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Table 3: Balance between treatment arms with census benchmarks

Demographics
Treated
n=274

Control
n=294 p-value Census (4 cities)

Household Size 2.9 2.8 0.787 2.4

Household Age Mean 33.4 32.9 0.700 37.9

Household Income (1–6)
2.8

($30–49k)

2.8
($30–49k)

0.889
3.9†

($50–74k)

Respondent Male 54% 50% 0.300 48%

Respondent White 35% 43% 0.057 36%

Respondent Education (1–8)
3.5

(Some college)

3.5
(Some college)

0.808
3.6†

(Some college)

Household Health (1–5)
3.6

(Good)

3.6
(Good)

0.682 NA

Household Chronic Condition 38% 32% 0.137 NA

Notes: Treated/Control are sample means (shares for 0/1). The p-values are from Welch two-sided tests. The last column
reports official population-weighted figures across New York City, Detroit, Indianapolis, and Milwaukee. † denotes values
imputed from ACS headline shares as documented.

Table 4: Summary of demographics with census benchmarks

Demographics
Lead
n=163

Non-lead
n=405 Census (4 cities)

Household Size 2.9 2.8 2.4

Household Age Mean 33.5 33.0 37.9

Household Income (1–6)
2.6

($30–49k)

2.8
($30–49k)

3.9†

($50–74k)

Respondent Male 49% 53% 48%

Respondent White 29% 43% 36%

Respondent Education (1–8)
3.3

(Some college)

3.6
(Some college)

3.6†

(Some college)

Household Health (1–5)
3.6

(Good)

3.6
(Good)

NA

Household Chronic Condition 31% 36% NA

Notes: Lead/Non-lead are sample means (shares for 0/1). The last column reports official population-weighted figures
across New York City, Detroit, Indianapolis, and Milwaukee. † denotes values imputed from ACS headline shares as
documented.

41



Table 5: Pre-treatment balance between treatment arms

Metrics
Treated
n=274

Control
n=294 p-value

Belief: lead 58% 56% 0.387

Belief: lead sample 23.7 27.0 0.181

Confidence: lead sample 3.8 3.9 0.825

WTP: pitcher 70.4 65.8 0.219

WTP: inspection 72.9 67.2 0.129

Notes: Values are means. p-values from Welch two-sided t-tests within each material group.

Table 6: Pre-treatment outcomes between treatment × material arms

Metrics

Lead Non-lead

Treated
n=78

Control
n=85 p-value Treated

n=196
Control
n=209 p-value

Belief: lead 64% 61% 0.494 55% 54% 0.530

Belief: lead sample 31.4 29.2 0.651 20.6 26.1 0.053

Confidence: lead sample 3.9 3.8 0.751 3.8 3.9 0.650

WTP: pitcher 74.0 66.0 0.203 69.0 65.8 0.481

WTP: inspection 66.5 69.9 0.542 75.5 66.1 0.052

Notes: Values are means. p-values from Welch two-sided t-tests within each material group.
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Table 7: Treatment Effects of LSL Information Disclosure (ITTs)

∆(Likelihood of LSL) ∆(Lead Exceedance) ∆(Confidence) ∆(Filter WTP) ∆(Insp WTP)

(1) (2) (3) (4) (5)

Lead × Treatment 0.21*** 6.66 6.04 16.2**
(0.046) (4.39) (5.22) (6.83)

Treatment -0.14*** -4.07** 0.22*** -8.34** -7.26**
(0.028) (1.98) (0.069) (3.32) (3.46)

Lead status = 1 0.042 4.05 -1.14 1.49
(0.035) (2.59) (3.67) (3.65)

LHS Mean -0.09 -1.30 0.19 -1.19 -1.42
LHS SD 0.28 21.38 0.83 31.45 35.62
City-FE Y Y Y Y Y
N 568 568 568 568 568
adj. R2 0.11 0.02 0.01 0.01 0.02

Notes. All columns run Equation (1) except Column (3). Change in the outcome variable is regressed on treatment, lead
status, the interaction between lead status and treatment, and city fixed effects. Heteroskedasticity-robust standard error
in parenthesis (* p < 0.10, ** p < 0.05, and *** p < 0.01).

Table 8: Treatment Effects of LSL Information Disclosure (ITTs) w/ Controls

∆(Likelihood of LSL) ∆(Lead Exceedance) ∆(Confidence) ∆(Filter WTP) ∆(Insp WTP)

(1) (2) (3) (4) (5)

Lead × Treatment 0.21*** 6.50 5.75 16.0**
(0.046) (4.41) (5.18) (6.84)

Treatment -0.14*** -4.05** 0.22*** -8.26** -7.20**
(0.028) (1.96) (0.069) (3.32) (3.45)

Lead status = 1 0.041 4.15 -1.26 1.36
(0.036) (2.57) (3.68) (3.70)

LHS Mean -0.09 -1.30 0.19 -1.19 -1.42
LHS SD 0.28 21.38 0.83 31.45 35.62
City-FE Y Y Y Y Y
Control Y Y Y Y Y
N 568 568 568 568 568
adj. R2 0.11 0.03 0.01 0.01 0.02

Notes. All columns control for household income and the presence of a household member aged 0-10. Heteroskedasticity-
robust standard error in parenthesis (* p < 0.10, ** p < 0.05, and *** p < 0.01)
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Table 9: Effect of the Order of the WTP Questions

Prior Change Posterior

Filter Insp Filter Insp Filter Insp
(1) (2) (3) (4) (5) (6)

Ask Insp WTP First -8.12** -4.38 -0.65 -3.32 -2.27 -4.45
(3.79) (3.85) (2.71) (3.02) (2.70) (2.89)

Pre Filter WTP 0.80***
(0.057)

Pre Insp WTP 0.74***
(0.058)

LHS Mean 68.05 69.94 -1.19 -1.42 66.86 68.53
LHS SD 44.78 45.33 31.45 35.62 46.88 48.00
City-FE Y Y Y Y Y Y
N 568 568 568 568 568 568
adj. R2 0.02 0.00 -0.00 0.01 0.58 0.51

Notes. This table shows results from regressing various WTP variables on whether the
WTP question for professional tap water lead inspection shows up before that for the lead-
filter pitcher in the survey flow for the specific respondent. This order is assigned randomly
within each stratum (i.e., city). Heteroskedasticity-robust standard error in parenthesis (*
p < 0.10, ** p < 0.05, and *** p < 0.01).
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Table 10: Treatment Effects of Disclosure: Regressing Post on Prior

Posterior
LSL Likelihood

Posterior
Lead Exceedance

Posterior
Confidence

Posterior
Filter WTP

Posterior
Insp WTP

(1) (2) (3) (4) (5)

Lead × Treatment 0.21*** 8.92** 6.99 13.1**
(0.042) (3.96) (4.99) (6.64)

Treatment -0.14*** -5.76*** 0.21*** -7.71** -4.95
(0.026) (1.80) (0.059) (3.22) (3.27)

Lead status = 1 0.060* 3.32 -1.65 1.99
(0.032) (2.55) (3.46) (3.56)

Pre Likelihood 0.60***
(0.043)

Pre Exceedance 0.68***
(0.045)

Pre Confidence 0.56***
(0.040)

Pre Filter WTP 0.80***
(0.054)

Pre Insp WTP 0.75***
(0.056)

LHS Mean 0.48 24.11 4.03 66.86 68.53
LHS SD 0.31 28.52 0.90 46.88 48.00
City-FE Y Y Y Y Y
N 568 568 568 568 568
adj. R2 0.39 0.56 0.39 0.59 0.51

Notes. All columns run Equation (2) except Column (3). The posterior value of the outcome variable
is regressed on treatment, lead status, the interaction between treatment and lead status, the prior
value of the same outcome variable, and city fixed effects. Heteroskedasticity-robust standard error
in parentheses (* p < 0.10, ** p < 0.05, and *** p < 0.01)
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Table 11: Treatment Effects of Disclosure: Learning Rate

∆(Likelihood of LSL) ∆(Lead Exceedance) ∆(Confidence)

(1) (2) (3) (4) (5) (6)

Lead × Treatment 0.21*** 6.66
(0.046) (4.39)

Perception gap × Treatment 0.20*** 8.84**
(0.047) (3.82)

Abs(Perc Gap) x Treatment -0.079
(0.25)

Treatment -0.14*** -0.021 -4.07** 0.45 0.22*** 0.26*
(0.028) (0.023) (1.98) (2.18) (0.069) (0.14)

Lead status = 1 0.042 4.05
(0.035) (2.59)

Perception gap 0.13*** 1.77
(0.033) (2.61)

Abs(Perception Gap) -0.021
(0.20)

LHS Mean -0.09 -0.09 -1.30 -1.30 0.19 0.19
LHS SD 0.28 0.28 21.38 21.38 0.83 0.83
City-FE Y Y Y Y Y Y
N 568 568 568 568 568 568
adj. R2 0.11 0.21 0.02 0.03 0.01 0.01

Notes. Columns (1), (3), (5) run Equation (1). Columns (2), (4), (6) run Equation (3). Column
(6) uses the absolute value of Gi in Equation (3). Heteroskedasticity-robust standard error in
parenthesis (* p < 0.10, ** p < 0.05, and *** p < 0.01).
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Appendices

A Additional Results

A.1 Additional Figures

Figure A1: Pre-intervention perceived likelihood of LSL presence by the status of whether respondent could recall
correctly about the service line material type information if they self-reported that they had been notified by the
utility. Gray represents respondents who either reported no notification or were unable to recall the service line
material. Green indicates those who reported being notified and correctly recalled the material type. Red shows the
distribution for those who reported being notified but recalled the material type incorrectly.
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A.2 Additional Tables

Table A1: Self-reported utility notification and recall
by city

City (Sample Size) Notified Recall Correct Recall

Detroit (136)
53

39%

51
38%

26
19%

Indianapolis (75)
11

15%

10
13%

9
12%

Milwaukee (58)
24

41%

24
41%

14
24%

NYC (299)
85

28%

80
27%

49
16%

Study Area
173
30%

165
29%

98
17%

Notes. Percentages are calculated based on the number of responses
within each city, except for the last row where they are calculated
by dividing the total number of responses.

Table A2: Response Screening

Sample Size Control Treated Total
p-value of Chi-square Test

for Treatment and LSL Status

All responses with treatment assigned 347 348 695 0.9142
All completes (i.e., attrition removed) 332 330 662 1.0000
Removed if duration < 10 min 306 295 601 0.8155
Removed if incorrect answer to

either of the attention checks
294 274 568 0.9807

Notes. (1) The treatment assignment happened right after finishing all pre-intervention questions and before the
intervention. (2) The last column reports p-values from Pearson’s Chi-square tests used to assess the independence of
treatment assignment and LSL status.
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Table A3: Other Pre- or Post- Intervention Characteristics

Metric
Treated
Mean

Control
Mean

Treated
N

Control
N

p-
value

Use tap water for drinking (%) 70.44 68.71 274 294 0.655
Use tap water for cooking (%) 97.08 95.92 274 294 0.451
Any treatment of drinking tap water (%) 73.06 75.25 193 202 0.620
Any treatment of cooking tap water (%) 55.64 51.06 266 282 0.284
Treatment certified to remove lead (%) 71.78 73.08 163 182 0.789
Perceived safety of treated drinking water (1-5) 3.97 4.09 150 165 0.321
Perceived safety of treated cooking water (1-5) 3.93 4.11 192 204 0.089

ADHD diagnosis of >3.5 mcg/dL BLL 3.91 3.90 274 294 0.949
Stroke death in 10,000 adults of >3.5 mcg/dL BLL 2.22 2.23 274 294 0.884

Trust in city’s database (0–10) 6.80 6.00 274 294 0.000
Trust in city’s database for control vs

trust in info received for treated (0–10)
6.88 6.00 274 294 0.000

Perceived effectiveness of water filter (0-10) 7.37 6.90 107 121 0.103

Notes. Water usage questions were before intervention while other questions in the table were after
all the post-intervention outcome measures, i.e., at the end of the survey.

Table A4: Perceived water safety (on 1-5 scale) regarding lead and E. Coli

Lead E. Coli

Change Posteior Change Posteior

(1) (2) (3) (4) (5) (6) (7) (8)

Lead × Treatment -0.60*** -0.62*** -0.63*** -0.61***
(0.18) (0.17) (0.18) (0.17)

Perception gap × Treatment -0.56*** -0.54*** -0.52*** -0.48***
(0.18) (0.17) (0.16) (0.15)

Treatment 0.32*** -0.0083 0.35*** 0.021 0.29*** -0.040 0.28*** -0.032
(0.090) (0.095) (0.087) (0.090) (0.087) (0.089) (0.083) (0.085)

Lead status = 1 0.14 0.15 0.070 0.11
(0.12) (0.11) (0.12) (0.12)

Perception gap 0.12 0.22** 0.039 0.15
(0.11) (0.11) (0.100) (0.098)

Pre lead safety 0.74*** 0.75***
(0.039) (0.040)

Pre E. Coli safety 0.79*** 0.79***
(0.031) (0.031)

LHS Mean 0.03 0.03 3.63 3.63 -0.05 -0.05 3.66 3.66
LHS SD 0.94 0.94 1.22 1.22 0.92 0.92 1.37 1.37
City-FE Y Y Y Y Y Y Y Y
N 568 568 568 568 568 568 568 568
adj. R2 0.03 0.03 0.49 0.48 0.03 0.03 0.61 0.60

Notes. The questions were asked before and after the intervention, for both lead and E. coli. The response was coded
on a 1-5 scale: (1) Very unhealthy for all people, requiring immediate intervention; (2) Unhealthy for all people; (3)
Unhealthy for sensitive people such as children, the elderly, or individuals with health conditions; (4) Acceptable, but
some health concerns; and (5) No health risk. Heteroskedasticity-robust standard error in parenthesis (* p < 0.10, **
p < 0.05, and *** p < 0.01)
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B Additional Proofs

B.1 Proof for Proposition 1

The first order condition for a maximum of the expected utility in Equation (4) requires

0 =
∂

∂z
U(z, πw) =

1

r̄
[E [u(y − z, ew)]− E [u(y, w)]] .

The second-order condition holds because ∂u(y − z, ew)/∂z < 0.

B.2 Proof for Proposition 2

The first order condition for a maximum of expected utility in Equation (6) requires

0 =
∂

∂z
Ũ(z, πw) =

1

r̄
[V1(z, πw)− V0(πw)] .

The second order condition can be confirmed by

∂maxa∈A u(y − c(a)− z, d(w, a))

∂z
< 0.

Thus, the optimal bid z̃∗(πw) equals the expected utility gain from acting on the realized w relative
to acting on πw, as characterized by Equation (7).

B.3 Proof for Lemma 1

It follows from Assumption 2 that

V0(πw) =max
a∈A

E [y − c(a) + v(d)] ,

V1(r, πw) =− r + E
[
max
a∈A

y − c(a) + v(d)

]
.

Thus, the optimal bidding in Equation (7) becomes

max
a∈A

E [y − c(a) + v(d)] = −z̃∗ + E
[
max
a∈A

y − c(a) + v(d)

]
,

which yields Equation (9)

B.4 WTP for water filter with known tap water lead level

Expected utility if bidding z knowing the tap water pollution level w is

U(z, w) =

∫ z

0

1

r̄
u(y − r, ew) dr +

∫ r̄

z

1

r̄
u(y, w) dr

=
1

r̄

∫ z

0
u(y − r, ew) dr +

(
1− z

r̄

)
u(y, w).

FOC is

∂

∂z
U(z, w) =

1

r̄
[u(y − z, ew)− u(y, w)] = 0.

The optimal bid needs to satisfy

u(y − z̈∗(w), ew) = u(y, w).
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B.5 Proof for Corollary 3

The linear mitigation cost assumption and the linear mitigation technology assumption in Assump-
tion 3 and the linear damage function assumption in Corollary 3 yield

Ṽ0(πw) = max
a∈[0,1]

y + (βµ− c)a− βµ

Ṽ1(πw) =E
[
max
a∈[0,1]

y + (βw − c)a− βw

]
.

Further,

Ṽ0(πw) =

{
y − βµ if µ ≤ c/β

y − c if µ > c/β

Ṽ1(πw) =

∫ c/β

−∞
(y − βw)f(w)dw

+

∫ ∞

c/β
(y + (βw − c)− βw)f(w)dw.

=y − β

∫ ∞

−∞
wf(w)dw +

∫ ∞

c/β
(βw − c)f(w)dw

=y − βµ+

∫ ∞

c/β
(βw − c)f(w)dw

Thus, by Equation (9),

z̃∗(πw) =

{∫∞
c/β(βw − c)f(w)dw if µ ≤ c/β∫∞
c/β(βw − c)f(w)dw − (βµ− c) if µ > c/β

(11)

Then, applying Assumption 4, the uniform distribution of πw.

1. If l ≥ c/β, then µ > c/β. Thus, applying the second case in Equation (11),

z̃∗(πw) =

∫ u

l
(βw − c)f(w)dw − (βµ− c) = (βµ− c)− (βµ− c) = 0

If u ≤ c/β, then µ ≤ c/β. Applying the first case in Equation (11), because the support of
the πw does not overlap with (c/β,∞), z̃∗(πw) = 0.

2. If l < c/β < u:

(a) When µ ≤ c/β,

z̃∗(πw) =
β

u− l

∫ u

c/β
wdw − c

1

u− l
(u− c/β) =

1

u− l
[
βu2

2
− cu+

c2

2β2
]

Thus,

∂z̃∗(πw)

∂µ
=

1

u− l
(βu− c)
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(b) When µ > c/β,

z̃∗(πw) =
1

u− l
[
βu2

2
− cu+

c2

2β2
]− (βµ− c)

Thus,

∂z̃∗(πw)

∂µ
=

1

u− l
(βu− c)− β =

1

u− l
(βl − c)

(c) For both cases

∂z̃∗(πw)

∂σ
=

√
3

(u− l)2
(3βσ2 − βµ2 + 2cµ). (12)

Please see the stepwise derivation in Appendix B.5.1. The necessary and sufficient
condition for ∂z̃∗(πw)

∂σ > 0 is

σ2 >
1

3β
(βµ2 − 2cµ) =

1

3
µ(µ− 2c

β
). (13)

A sufficient condition for the inequality in 13 is µ − 2c
β < 0 because σ2 > 0. Because

2c/β > cβ, this sufficient condition always holds when µ ≤ c/β.

B.5.1 Derivation of Equation (12)

∂z̃∗(πw)

∂σ
=

∂

∂σ

1

u− l
[
βu2

2
− cu]

=[
−2

√
3

(u− l)2
(
β

2
u2 − cu) +

1

u− l
(
√
3βu−

√
3c)]

=
1

(u− l)2
[−

√
3βu2 + 2

√
3cu+

√
3βu2 −

√
3βul −

√
3cu+

√
3cl]

=

√
3

(u− l)2
(2cµ− βul)

=

√
3

(u− l)2
(2cµ− β(µ+

√
3σ)(µ−

√
3σ))

=

√
3

(u− l)2
(3βσ2 − βµ2 + 2cµ)

B.6 WTP for inspection with quadratic damage function

Let g(a,w2) = y− ca− βw2(1− a)2. The damage functional form assumption in Corollary 4 yields

Ṽ0(πw) = max
a∈[0,1]

E[g(a,w2)] = max
a∈[0,1]

E[y − ca− βw2(1− a)2]

= max
a∈[0,1]

y − ca− β(µ2 + σ2)(1− a)2 = max
a∈[0,1]

g(a, µ2 + σ2)

= max
a∈[0,1]

−β(µ2 + σ2)[a− (1− c

2β(µ2 + σ2)
]2 + y − c+

c2

4β(µ2 + σ2)

Ṽ1(πw) = E[ max
a∈[0,1]

g(a,w2)] = E[ max
a∈[0,1]

y − ca− βw2(1− a)2]

= E
[
max
a∈[0,1]

−βw2[a− (1− c

2βw2
)]2 + y − c+

c2

4βw2

]
(14)
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1. Assume l2 ≥ c
2β , then

0 < 1− c

2βl2
< 1− c

2β(µ2 + σ2)
< 1− c

2βu2
< 1.

Thus, Equations in (14) yields

Ṽ0(πw) =y − c+
c2

4β(µ2 + σ2)
,

Ṽ1(πw) =E[y − c+
c2

4βw2
] = y − c+

c2

4β

1

u− l
(−1)[

1

w
|ul ]

=y − c+
c2

4β

1

u− l
(
1

l
− 1

u
) = y − c+

c2

4β

1

µ2 − 3σ2
.

Then by Equation (9),

z̃∗(πw) =
c2

4β
[

1

µ2 − 3σ2
− 1

µ2 + σ2
] =

c2

4β

4σ2

µ4 − 2µ2σ2 − 3σ4
.

Thus,

∂z̃∗(πw)

∂µ
=

c2

4β

−16µσ2(µ2 − σ2)

(µ4 − 2µ2σ2 − 3σ4)2
.

Therefore ∂z̃∗(πw)
∂µ < 0 under the assumption µ ≥

√
3σ. In addition,

∂z̃∗(πw)

∂σ2
=

c2

4β

4(µ4 − 2µ2σ2 − 3σ4)− (−2µ2 − 6σ2)4σ2

(µ4 − 2µ2σ2 − 3σ4)2

=
c2

4β

4µ4 + 12σ4

(µ4 − 2µ2σ2 − 3σ4)2
> 0.

2. Assume u2 ≤ c
2β , then

1− c

2βl2
< 1− c

2β(µ2 + σ2)
< 1− c

2βu2
< 0.

Thus, Equations in (14) yields

Ṽ0(πw) =g(0, µ2 + σ2) = y − β(µ2 + σ2),

Ṽ1(πw) =E[g(0, w2)] = E[y − βw2] = y − β(µ2 + σ2).

Thus, z̃∗(πw) = 0.
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